Skip to main content

Diagnostic Applications of Nuclear Medicine: Lymphomas

Nuclear Oncology

Abstract

Hodgkin and non-Hodgkin lymphomas are lymphoid neoplasms arising from B cells, T cells, or NK (natural killer) cells. [18F]FDG PET/CT is more accurate for the primary staging of lymphoma, particularly because it can detect disease in normal-sized lymph nodes, liver, spleen, and bone marrow. A major advantage of [18F]FDG PET in determining the outcome of therapy is distinguishing active lymphoma from fibrosis/necrosis in residual masses. Posttherapy [18F]FDG PET provides important prognostic information and has been incorporated into the currently used criteria for evaluating response to therapy in lymphoma (Lugano/Lyric Classifications). Interim [18F]FDG PET/CT also provides prognostic information and is being evaluated for “risk-adapted therapy” in setting of clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

[18F]FDG:

2-Deoxy-2-[18F]fluoro-d-glucose

18F-FLT:

3′-18F-fluoro-3′-deoxythymidine

ABVD:

Therapy with adriamycin, bleomycin, vinblastine, and dacarbazine

ASCT:

Autologous stem cell transplantation

BEACOPP:

Therapy with bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, prednisone, and procarbazine

cHL:

Classical Hodgkin lymphoma

CHOP:

Therapy with cyclophosphamide, doxorubicin, vincristine, and prednisolone

CLL:

Chronic lymphocytic leukemia

CT:

X-ray computed tomography

DLBCL:

Diffuse large B-cell lymphoma

EBV:

Epstein-Barr herpesvirus (EBV)

ECOG:

Eastern Cooperative Oncology Group

EFS:

Event-free survival

EORTC:

European Organisation for Research and Treatment of Cancer

EPOCH-R (or R-EPOCH):

Therapy with rituximab, etoposide, prednisolone, oncovin (vincristine), cyclophosphamide, and hydroxydaunorubicin (doxorubicin)

EPOCH:

Therapy with etoposide, prednisolone, oncovin (vincristine), cyclophosphamide, and hydroxydaunorubicin (doxorubicin)

FLIPI:

International Prognostic Index for follicular Hodgkin lymphoma

G-CSF:

Granulocyte colony-stimulating factor

GEP:

Gene expression profiling

HCT:

Hematopoietic cell transplantation

HL:

Hodgkin lymphoma

ICE:

Therapy with ifosfamide, carboplatin, and etoposide

IFRT:

Involved-field radiation therapy

IPI:

International Prognostic Index

IPS:

International Prognostic Score

IWG:

International Working Group

LDH:

Lactate dehydrogenase

lpHL:

Lymphocyte-predominant Hodgkin lymphoma

MALT:

Mucosa-associated lymphoid tissue

MOPP:

Therapy with mechlorethamine, vincristine, procarbazine, and prednisone

MRU:

Minimal residual uptake

NCCN:

National Comprehensive Cancer Network

NHL:

Non-Hodgkin lymphoma (NHL)

NK cell:

Natural killer cells

NPV:

Negative predictive value

OS:

Overall survival

PCR:

Polymerase chain reaction

PET:

Positron emission tomography

PET/CT:

Positron emission tomography/Computed tomography

PETAL:

Positron emission tomography guided therapy of aggressive lymphomas

PFS:

Progression-free survival

R-CHOP:

Rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone

R-EPOCH (or EPOCH-R):

Therapy with rituximab, etoposide, prednisolone, oncovin (vincristine), cyclophosphamide, and hydroxydaunorubicin (doxorubicin)

R-ICE:

Therapy with rituximab, ifosfamide, carboplatin, and etoposide

RS cell:

Reed-Sternberg cell

RSNA:

Radiological Society of North America

SLL:

Small lymphocytic lymphoma

SUV:

Standardized uptake value

WBC:

White blood cell

References

  1. Kuwabara Y, Ichiya Y, Otsuka M, Miyake Y, Gunasekera R, Hasuo K, et al. High [18F]FDG uptake in primary cerebral lymphoma: a PET study. J Comput Assist Tomogr. 1988;12(1):47–8.

    Article  CAS  PubMed  Google Scholar 

  2. Newman JS, Francis IR, Kaminski MS, Wahl RL. Imaging of lymphoma with PET with 2-[F-18]-fluoro-2-deoxy-D-glucose: correlation with CT. Radiology. 1994;190(1):111–6.

    Article  CAS  PubMed  Google Scholar 

  3. Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin. 2016;66(1):7–30.

    Article  PubMed  Google Scholar 

  4. Weiss LM, Strickler JG, Warnke RA, Purtilo DT, Sklar J. Epstein-Barr viral DNA in tissues of Hodgkin’s disease. Am J Pathol. 1987;129(1):86–91. Pubmed Central PMCID: 1899692.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hjalgrim H, Askling J, Rostgaard K, Hamilton-Dutoit S, Frisch M, Zhang JS, et al. Characteristics of Hodgkin’s lymphoma after infectious mononucleosis. N Engl J Med. 2003;349(14):1324–32.

    Article  CAS  PubMed  Google Scholar 

  6. Kamper PM, Kjeldsen E, Clausen N, Bendix K, Hamilton-Dutoit S, d’Amore F. Epstein-Barr virus-associated familial Hodgkin lymphoma: paediatric onset in three of five siblings. Br J Haematol. 2005;129(5):615–7.

    Article  PubMed  Google Scholar 

  7. Mack TM, Cozen W, Shibata DK, Weiss LM, Nathwani BN, Hernandez AM, et al. Concordance for Hodgkin’s disease in identical twins suggesting genetic susceptibility to the young-adult form of the disease. N Engl J Med. 1995;332(7):413–8.

    Article  CAS  PubMed  Google Scholar 

  8. Horning SJ. Hodgkin’s lymphoma. In: Abeloff MAJ, Niederhuber JE, Kastan MB, McKenna WG, editors. Abeloff’s clinical oncology. 4th ed. Philadelphia: Churchill Livingstone Elsevier; 2008.

    Google Scholar 

  9. Diseases of white cells, lymph nodes, and pleen. In: Cotran RS, Kumar V, Robbins SL, eds, editors. Pathologic basis of sisease. 5th ed. Philadelphia, PA: W.B. Saunders Company; 1994. p. 629–72.

    Google Scholar 

  10. NCCN clinical practice guidelines in oncology Hodgkin Lymphoma version 2.2015: NCCN; 2015 [cited 2015 8.21.2015]. Available from: http://www.nccn.org/professionals/physician_gls/f_guidelines.asp#site

  11. Foss HD, Reusch R, Demel G, Lenz G, Anagnostopoulos I, Hummel M, et al. Frequent expression of the B-cell-specific activator protein in Reed-Sternberg cells of classical Hodgkin’s disease provides further evidence for its B-cell origin. Blood. 1999;94(9):3108–13.

    CAS  PubMed  Google Scholar 

  12. Marafioti T, Hummel M, Anagnostopoulos I, Foss HD, Falini B, Delsol G, et al. Origin of nodular lymphocyte-predominant Hodgkin’s disease from a clonal expansion of highly mutated germinal-center B cells. N Engl J Med. 1997;337(7):453–8.

    Article  CAS  PubMed  Google Scholar 

  13. Hall PA, D’Ardenne AJ. Value of CD15 immunostaining in diagnosing Hodgkin’s disease: a review of published literature. J Clin Pathol. 1987;40(11):1298–304. Pubmed Central PMCID: 1141228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pinkus GS, Thomas P, Said JW. Leu-M1 – a marker for Reed-Sternberg cells in Hodgkin’s disease. An immunoperoxidase study of paraffin-embedded tissues. Am J Pathol. 1985;119(2):244–52. Pubmed Central PMCID: 1887896.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Rassidakis GZ, Medeiros LJ, Viviani S, Bonfante V, Nadali GP, Vassilakopoulos TP, et al. CD20 expression in Hodgkin and Reed-Sternberg cells of classical Hodgkin’s disease: associations with presenting features and clinical outcome. J Clin Oncol. 2002;20(5):1278–87.

    CAS  PubMed  Google Scholar 

  16. Watanabe K, Yamashita Y, Nakayama A, Hasegawa Y, Kojima H, Nagasawa T, et al. Varied B-cell immunophenotypes of Hodgkin/Reed-Sternberg cells in classic Hodgkin’s disease. Histopathology. 2000;36(4):353–61.

    Article  CAS  PubMed  Google Scholar 

  17. Mani H, Jaffe ES. Hodgkin lymphoma: an update on its biology with new insights into classification. Clin Lymphoma Myeloma. 2009;9(3):206–16. Pubmed Central PMCID: 2806063.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kuppers R, Schwering I, Brauninger A, Rajewsky K, Hansmann ML. Biology of Hodgkin’s lymphoma. Ann Oncol. 2002;13 Suppl 1:11–8.

    Article  PubMed  Google Scholar 

  19. M’Kacher R, Bennaceur-Griscelli A, Girinsky T, Koscielny S, Delhommeau F, Dossou J, et al. Telomere shortening and associated chromosomal instability in peripheral blood lymphocytes of patients with Hodgkin’s lymphoma prior to any treatment are predictive of second cancers. Int J Radiat Oncol Biol Phys. 2007;68(2):465–71.

    Article  PubMed  CAS  Google Scholar 

  20. Poppema S, Kaleta J, Hepperle B. Chromosomal abnormalities in patients with Hodgkin’s disease: evidence for frequent involvement of the 14q chromosomal region but infrequent bcl-2 gene rearrangement in Reed-Sternberg cells. J Natl Cancer Inst. 1992;84(23):1789–93.

    Article  CAS  PubMed  Google Scholar 

  21. Green MR, Monti S, Rodig SJ, Juszczynski P, Currie T, O’Donnell E, et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood. 2010;116(17):3268–77. Pubmed Central PMCID: 2995356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Herndier BG, Sanchez HC, Chang KL, Chen YY, Weiss LM. High prevalence of Epstein-Barr virus in the Reed-Sternberg cells of HIV-associated Hodgkin’s disease. Am J Pathol. 1993;142(4):1073–9. Pubmed Central PMCID: 1886872.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Pelstring RJ, Zellmer RB, Sulak LE, Banks PM, Clare N. Hodgkin’s disease in association with human immunodeficiency virus infection. Pathologic and immunologic features. Cancer. 1991;67(7):1865–73.

    Article  CAS  PubMed  Google Scholar 

  24. Schmitz R, Hansmann ML, Bohle V, Martin-Subero JI, Hartmann S, Mechtersheimer G, et al. TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma. J Exp Med. 2009;206(5):981–9. Pubmed Central PMCID: 2715030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tiacci E, Doring C, Brune V, van Noesel CJ, Klapper W, Mechtersheimer G, et al. Analyzing primary Hodgkin and Reed-Sternberg cells to capture the molecular and cellular pathogenesis of classical Hodgkin lymphoma. Blood. 2012;120(23):4609–20.

    Article  CAS  PubMed  Google Scholar 

  26. Skinnider BF, Mak TW. The role of cytokines in classical Hodgkin lymphoma. Blood. 2002;99(12):4283–97.

    Article  CAS  PubMed  Google Scholar 

  27. Barrington SF, Mikhaeel NG, Kostakoglu L, Meignan M, Hutchings M, Mueller SP, et al. Role of imaging in the staging and response assessment of lymphoma: consensus of the International Conference on Malignant Lymphomas Imaging Working Group. J Clin Oncol. 2014;32(27):3048–58.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059–68.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Carbone PP, Kaplan HS, Musshoff K, Smithers DW, Tubiana M. Report of the committee on Hodgkin’s disease staging classification. Cancer Res. 1971;31(11):1860–1.

    CAS  PubMed  Google Scholar 

  30. Lister TA, Crowther D, Sutcliffe SB, Glatstein E, Canellos GP, Young RC, et al. Report of a committee convened to discuss the evaluation and staging of patients with Hodgkin’s disease: Cotswolds meeting. J Clin Oncol. 1989;7(11):1630–6.

    Article  CAS  PubMed  Google Scholar 

  31. Cosset JM, Henry-Amar M, Meerwaldt JH, Carde P, Noordijk EM, Thomas J, et al. The EORTC trials for limited stage Hodgkin’s disease. The EORTC Lymphoma Cooperative Group. Eur J Cancer. 1992;28A(11):1847–50.

    Article  CAS  PubMed  Google Scholar 

  32. Engert A, Plutschow A, Eich HT, Lohri A, Dorken B, Borchmann P, et al. Reduced treatment intensity in patients with early-stage Hodgkin’s lymphoma. N Engl J Med. 2010;363(7):640–52.

    Article  CAS  PubMed  Google Scholar 

  33. Hasenclever D, Diehl V. A prognostic score for advanced Hodgkin’s disease. International prognostic factors project on advanced Hodgkin’s disease. N Engl J Med. 1998;339(21):1506–14.

    Article  CAS  PubMed  Google Scholar 

  34. Gallamini A, Hutchings M, Rigacci L, Specht L, Merli F, Hansen M, et al. Early interim 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography is prognostically superior to international prognostic score in advanced-stage Hodgkin’s lymphoma: a report from a joint Italian-Danish study. J Clin Oncol. 2007;25(24):3746–52.

    Article  CAS  PubMed  Google Scholar 

  35. Canellos GP, Anderson JR, Propert KJ, Nissen N, Cooper MR, Henderson ES, et al. Chemotherapy of advanced Hodgkin’s disease with MOPP, ABVD, or MOPP alternating with ABVD. N Engl J Med. 1992;327(21):1478–84.

    Article  CAS  PubMed  Google Scholar 

  36. Canellos GP, Niedzwiecki D. Long-term follow-up of Hodgkin’s disease trial. N Engl J Med.2002; 346(18):1417–8.

    Article  PubMed  Google Scholar 

  37. DeVita Jr VT, Carbone PP. Treatment of Hodgkin’s disease. Med Ann Dist C. 1967;36(4):232–4. passim.

    Google Scholar 

  38. Klimo P, Connors JM. MOPP/ABV hybrid program: combination chemotherapy based on early introduction of seven effective drugs for advanced Hodgkin’s disease. J Clin Oncol. 1985;3(9):1174–82.

    Article  CAS  PubMed  Google Scholar 

  39. Laskar S, Gupta T, Vimal S, Muckaden MA, Saikia TK, Pai SK, et al. Consolidation radiation after complete remission in Hodgkin’s disease following six cycles of doxorubicin, bleomycin, vinblastine, and dacarbazine chemotherapy: is there a need? J Clin Oncol. 2004;22(1):62–8.

    Article  CAS  PubMed  Google Scholar 

  40. Meyer RM, Gospodarowicz MK, Connors JM, Pearcey RG, Wells WA, Winter JN, et al. ABVD alone versus radiation-based therapy in limited-stage Hodgkin’s lymphoma. N Engl J Med. 2012;366(5):399–408. Pubmed Central PMCID: 3932020.

    Article  CAS  PubMed  Google Scholar 

  41. Pavlovsky S, Maschio M, Santarelli MT, Muriel FS, Corrado C, Garcia I, et al. Randomized trial of chemotherapy versus chemotherapy plus radiotherapy for stage I-II Hodgkin’s disease. J Natl Cancer Inst. 1988;80(18):1466–73.

    Article  CAS  PubMed  Google Scholar 

  42. Raemaekers JM, Andre MP, Federico M, Girinsky T, Oumedaly R, Brusamolino E, et al. Omitting radiotherapy in early positron emission tomography-negative stage I/II Hodgkin lymphoma is associated with an increased risk of early relapse: clinical results of the preplanned interim analysis of the randomized EORTC/LYSA/FIL H10 trial. J Clin Oncol. 2014; 32(12):1188–94.

    Article  PubMed  Google Scholar 

  43. Shore T, Nelson N, Weinerman B. A meta-analysis of stages I and II Hodgkin’s disease. Cancer. 1990; 65(5):1155–60.

    Article  CAS  PubMed  Google Scholar 

  44. Specht L, Gray RG, Clarke MJ, Peto R. Influence of more extensive radiotherapy and adjuvant chemotherapy on long-term outcome of early-stage Hodgkin’s disease: a meta-analysis of 23 randomized trials involving 3,888 patients. International Hodgkin’s Disease Collaborative Group. J Clin Oncol. 1998;16(3):830–43.

    Article  CAS  PubMed  Google Scholar 

  45. Specht L, Yahalom J, Illidge T, Berthelsen AK, Constine LS, Eich HT, et al. Modern radiation therapy for Hodgkin lymphoma: field and dose guidelines from the international lymphoma radiation oncology group (ILROG). Int J Radiat Oncol Biol Phys. 2014;89(4):854–62.

    Article  PubMed  Google Scholar 

  46. Klimm B, Diehl V, Pfistner B, Engert A. Current treatment strategies of the German Hodgkin Study Group (GHSG). Eur J Haematol Suppl. 2005;66:125–34.

    Article  Google Scholar 

  47. Carde P, Hagenbeek A, Hayat M, Monconduit M, Thomas J, Burgers MJ, et al. Clinical staging versus laparotomy and combined modality with MOPP versus ABVD in early-stage Hodgkin’s disease: the H6 twin randomized trials from the European Organization for Research and Treatment of Cancer Lymphoma Cooperative Group. J Clin Oncol. 1993;11(11):2258–72.

    Article  CAS  PubMed  Google Scholar 

  48. Connors JM, Klimo P, Adams G, Burns BF, Cooper I, Meyer RM, et al. Treatment of advanced Hodgkin’s disease with chemotherapy – comparison of MOPP/ABV hybrid regimen with alternating courses of MOPP and ABVD: a report from the National Cancer Institute of Canada clinical trials group. J Clin Oncol. 1997;15(4):1638–45.

    Article  CAS  PubMed  Google Scholar 

  49. Duggan DB, Petroni GR, Johnson JL, Glick JH, Fisher RI, Connors JM, et al. Randomized comparison of ABVD and MOPP/ABV hybrid for the treatment of advanced Hodgkin’s disease: report of an intergroup trial. J Clin Oncol. 2003;21(4):607–14.

    Article  CAS  PubMed  Google Scholar 

  50. Sieber M, Tesch H, Pfistner B, Rueffer U, Lathan B, Brosteanu O, et al. Rapidly alternating COPP/ABV/IMEP is not superior to conventional alternating COPP/ABVD in combination with extended-field radiotherapy in intermediate-stage Hodgkin’s lymphoma: final results of the German Hodgkin’s Lymphoma Study Group Trial HD5. J Clin Oncol. 2002;20(2):476–84.

    CAS  PubMed  Google Scholar 

  51. Diehl V, Brilliant C, Engert A, Wolf J, Nogova L, Mueller R, et al. Reduction of combined modality treatment intensity in early stage Hodgkin’s lymphoma: interim analysis of the HD10 trial of the GHSG. Eur J Haematol. 2004;73:37.

    Google Scholar 

  52. Diehl V, Brilliant C, Engert A, Wolf J, Nogova L, Mueller R, et al. Intensification of chemotherapy and concomitant reduction of radiotherapy dose in intermediate stage Hodgkin’s lymphoma: results of the 4th interim analysis of the HD11 trial of the GHSG. Eur J Haematol. 2004;73:37.

    Google Scholar 

  53. Diehl V, Franklin J, Pfreundschuh M, Lathan B, Paulus U, Hasenclever D, et al. Standard and increased-dose BEACOPP chemotherapy compared with COPP-ABVD for advanced Hodgkin’s disease. N Engl J Med. 2003;348(24):2386–95.

    Article  CAS  PubMed  Google Scholar 

  54. Ballova V, Ruffer JU, Haverkamp H, Pfistner B, Muller-Hermelink HK, Duhmke E, et al. A prospectively randomized trial carried out by the German Hodgkin Study Group (GHSG) for elderly patients with advanced Hodgkin’s disease comparing BEACOPP baseline and COPP-ABVD (study HD9elderly). Ann Oncol. 2005;16(1):124–31.

    Article  CAS  PubMed  Google Scholar 

  55. Carde PP, Karrasch M, Fortpied C, Brice P, Khaled HM, Caillot D, et al. ABVD (8 cycles) versus BEACOPP (4 escalated cycles = > 4 baseline) in stage III–IV high-risk Hodgkin lymphoma (HL): First results of EORTC 20012 Intergroup randomized phase III clinical trial. ASCO Meeting Abstracts. 2012 May 30, 2012;30(15_suppl):8002.

    Google Scholar 

  56. Gordon LI, Hong F, Fisher RI, Bartlett NL, Connors JM, Gascoyne RD, et al. Randomized phase III trial of ABVD versus Stanford V with or without radiation therapy in locally extensive and advanced-stage Hodgkin lymphoma: an intergroup study coordinated by the Eastern Cooperative Oncology Group (E2496). J Clin Oncol. 2013;31(6):684–91. Pubmed Central PMCID: 3574266.

    Article  PubMed  Google Scholar 

  57. Akpek G, Ambinder RF, Piantadosi S, Abrams RA, Brodsky RA, Vogelsang GB, et al. Long-term results of blood and marrow transplantation for Hodgkin’s lymphoma. J Clin Oncol. 2001;19(23):4314–21.

    Article  CAS  PubMed  Google Scholar 

  58. Jagannath S, Armitage JO, Dicke KA, Tucker SL, Velasquez WS, Smith K, et al. Prognostic factors for response and survival after high-dose cyclophosphamide, carmustine, and etoposide with autologous bone marrow transplantation for relapsed Hodgkin’s disease. J Clin Oncol. 1989;7(2):179–85.

    Article  CAS  PubMed  Google Scholar 

  59. Jones RJ, Piantadosi S, Mann RB, Ambinder RF, Seifter EJ, Vriesendorp HM, et al. High-dose cytotoxic therapy and bone marrow transplantation for relapsed Hodgkin’s disease. J Clin Oncol. 1990; 8(3):527–37.

    Article  CAS  PubMed  Google Scholar 

  60. Nademanee A, O’Donnell MR, Snyder DS, Schmidt GM, Parker PM, Stein AS, et al. High-dose chemotherapy with or without total body irradiation followed by autologous bone marrow and/or peripheral blood stem cell transplantation for patients with relapsed and refractory Hodgkin’s disease: results in 85 patients with analysis of prognostic factors. Blood. 1995;85(5):1381–90.

    CAS  PubMed  Google Scholar 

  61. Sureda A, Arranz R, Iriondo A, Carreras E, Lahuerta JJ, Garcia-Conde J, et al. Autologous stem-cell transplantation for Hodgkin’s disease: results and prognostic factors in 494 patients from the Grupo Espanol de Linfomas/Transplante Autologo de Medula Osea Spanish Cooperative Group. J Clin Oncol. 2001; 19(5):1395–404.

    Article  CAS  PubMed  Google Scholar 

  62. Anderson JE, Litzow MR, Appelbaum FR, Schoch G, Fisher LD, Buckner CD, et al. Allogeneic, syngeneic, and autologous marrow transplantation for Hodgkin’s disease: the 21-year Seattle experience. J Clin Oncol. 1993;11(12):2342–50.

    Article  CAS  PubMed  Google Scholar 

  63. Gajewski JL, Phillips GL, Sobocinski KA, Armitage JO, Gale RP, Champlin RE, et al. Bone marrow transplants from HLA-identical siblings in advanced Hodgkin’s disease. J Clin Oncol. 1996;14(2):572–8.

    Article  CAS  PubMed  Google Scholar 

  64. Horning SJ, Chao NJ, Negrin RS, Hoppe RT, Long GD, Hu WW, et al. High-dose therapy and autologous hematopoietic progenitor cell transplantation for recurrent or refractory Hodgkin’s disease: analysis of the Stanford University results and prognostic indices. Blood. 1997;89(3):801–13.

    CAS  PubMed  Google Scholar 

  65. Fehniger TA, Larson S, Trinkaus K, Siegel MJ, Cashen AF, Blum KA, et al. A phase 2 multicenter study of lenalidomide in relapsed or refractory classical Hodgkin lymphoma. Blood. 2011; 118(19):5119–25. Pubmed Central PMCID: 3217400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Johnston PB, Inwards DJ, Colgan JP, Laplant BR, Kabat BF, Habermann TM, et al. A phase II trial of the oral mTOR inhibitor everolimus in relapsed Hodgkin lymphoma. Am J Hematol. 2010;85(5):320–4. Pubmed Central PMCID: 4420736.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Moskowitz AJ, Hamlin Jr PA, Perales MA, Gerecitano J, Horwitz SM, Matasar MJ, et al. Phase II study of bendamustine in relapsed and refractory Hodgkin lymphoma. J Clin Oncol. 2013; 31(4):456–60. Pubmed Central PMCID: 3862960.

    Article  CAS  PubMed  Google Scholar 

  68. Younes A, Gopal AK, Smith SE, Ansell SM, Rosenblatt JD, Savage KJ, et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J Clin Oncol. 2012;30(18):2183–9. Pubmed Central PMCID: 3646316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Armand P. Checkpoint blockade in lymphoma. Hematol/Educ Pro Am Soc Hematol Am Soc Hematol Educ Prog. 2015;2015(1):69–73.

    Google Scholar 

  70. Jackson C, Sirohi B, Cunningham D, Horwich A, Thomas K, Wotherspoon A. Lymphocyte-predominant Hodgkin lymphoma – clinical features and treatment outcomes from a 30-year experience. Ann Oncol. 2010;21(10):2061–8.

    Article  CAS  PubMed  Google Scholar 

  71. Ekstrand BC, Lucas JB, Horwitz SM, Fan Z, Breslin S, Hoppe RT, et al. Rituximab in lymphocyte-predominant Hodgkin disease: results of a phase 2 trial. Blood. 2003;101(11):4285–9.

    Article  CAS  PubMed  Google Scholar 

  72. Rehwald U, Schulz H, Reiser M, Sieber M, Staak JO, Morschhauser F, et al. Treatment of relapsed CD20+ Hodgkin lymphoma with the monoclonal antibody rituximab is effective and well tolerated: results of a phase 2 trial of the German Hodgkin Lymphoma Study Group. Blood. 2003;101(2):420–4.

    Article  CAS  PubMed  Google Scholar 

  73. Younes A, Romaguera J, Hagemeister F, McLaughlin P, Rodriguez MA, Fiumara P, et al. A pilot study of rituximab in patients with recurrent, classic Hodgkin disease. Cancer. 2003;98(2):310–4.

    Article  CAS  PubMed  Google Scholar 

  74. Dores GM, Metayer C, Curtis RE, Lynch CF, Clarke EA, Glimelius B, et al. Second malignant neoplasms among long-term survivors of Hodgkin’s disease: a population-based evaluation over 25 years. J Clin Oncol. 2002;20(16):3484–94.

    Article  PubMed  Google Scholar 

  75. Swerdlow AJ, Higgins CD, Smith P, Cunningham D, Hancock BW, Horwich A, et al. Myocardial infarction mortality risk after treatment for Hodgkin disease: a collaborative British cohort study. J Natl Cancer Inst. 2007;99(3):206–14.

    Article  PubMed  Google Scholar 

  76. Figures. ACSCFa. [updated 4 Jan 2016.]. Available from: http://www.cancer.org/docroot/STT/content/STT_1x_Cancer_Facts__Figures_201.

  77. Baecklund E, Iliadou A, Askling J, Ekbom A, Backlin C, Granath F, et al. Association of chronic inflammation, not its treatment, with increased lymphoma risk in rheumatoid arthritis. Arthritis Rheum. 2006;54(3):692–701.

    Article  PubMed  Google Scholar 

  78. Grulich AE, van Leeuwen MT, Falster MO, Vajdic CM. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet. 2007;370(9581):59–67.

    Article  PubMed  Google Scholar 

  79. Ramos-Casals M, la Civita L, de Vita S, Solans R, Luppi M, Medina F, et al. Characterization of B cell lymphoma in patients with Sjogren’s syndrome and hepatitis C virus infection. Arthritis Rheum. 2007; 57(1):161–70.

    Article  PubMed  Google Scholar 

  80. Harris NL, Jaffe ES, Stein H, Banks PM, Chan JK, Cleary ML, et al. A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood. 1994;84(5):1361–92.

    CAS  PubMed  Google Scholar 

  81. Jaffe ES. The 2008 WHO classification of lymphomas: implications for clinical practice and translational research. Hematol/Educ Pro Am Soc Hematol Am Soc Hematol Educ Prog. 2009:523–31.

    Google Scholar 

  82. Swerdllow S, Campo E, Harris NL. WHO classification of tumours of haematopoietic and lymphoid tissues. France: IARC Press; 2008.

    Google Scholar 

  83. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403(6769):503–11.

    Article  CAS  PubMed  Google Scholar 

  84. Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC, et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med. 2002; 8(1):68–74.

    Article  CAS  PubMed  Google Scholar 

  85. Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med. 2002;346(25):1937–47.

    Article  PubMed  Google Scholar 

  86. Johnson NA, Slack GW, Savage KJ, Connors JM, Ben-Neriah S, Rogic S, et al. Concurrent expression of MYC and BCL2 in diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. J Clin Oncol. 2012;30(28):3452–9. Pubmed Central PMCID: 3454768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Anderson T, Chabner BA, Young RC, Berard CW, Garvin AJ, Simon RM, et al. Malignant lymphoma. 1. The histology and staging of 473 patients at the national cancer institute. Cancer. 1982; 50(12):2699–707.

    Article  CAS  PubMed  Google Scholar 

  88. NCCN Clinical Practice Guidelines in Oncology Non-Hodgkin’s Lymphoma Version 2.2015 NCCN; 2015 [cited 2015 8.21.2015]. Available from: http://www.nccn.org/professionals/physician_gls/f_guidelines.asp#site

  89. A predictive model for aggressive non-Hodgkin’s lymphoma. The International Non-Hodgkin’s Lymphoma Prognostic Factors Project. The New England journal of medicine. 1993 Sep 30;329(14):987–94.

    Google Scholar 

  90. Sehn LH, Berry B, Chhanabhai M, Fitzgerald C, Gill K, Hoskins P, et al. The revised International Prognostic Index (R-IPI) is a better predictor of outcome than the standard IPI for patients with diffuse large B-cell lymphoma treated with R-CHOP. Blood. 2007;109(5):1857–61.

    Article  CAS  PubMed  Google Scholar 

  91. Miller TP. The limits of limited stage lymphoma. J Clin Oncol. 2004;22(15):2982–4.

    Article  PubMed  Google Scholar 

  92. Zhou Z, Sehn LH, Rademaker AW, Gordon LI, Lacasce AS, Crosby-Thompson A, et al. An enhanced International Prognostic Index (NCCN-IPI) for patients with diffuse large B-cell lymphoma treated in the rituximab era. Blood. 2014;123(6):837–42.

    Article  CAS  PubMed  Google Scholar 

  93. Blay J, Gomez F, Sebban C, Bachelot T, Biron P, Guglielmi C, et al. The International Prognostic Index correlates to survival in patients with aggressive lymphoma in relapse: analysis of the PARMA trial. Parma Group Blood. 1998;92(10):3562–8.

    CAS  PubMed  Google Scholar 

  94. Hamlin PA, Zelenetz AD, Kewalramani T, Qin J, Satagopan JM, Verbel D, et al. Age-adjusted International Prognostic Index predicts autologous stem cell transplantation outcome for patients with relapsed or primary refractory diffuse large B-cell lymphoma. Blood. 2003;102(6):1989–96.

    Article  CAS  PubMed  Google Scholar 

  95. Lerner RE, Thomas W, Defor TE, Weisdorf DJ, Burns LJ. The International Prognostic Index assessed at relapse predicts outcomes of autologous transplantation for diffuse large-cell non-Hodgkin’s lymphoma in second complete or partial remission. Biol Blood Marrow Transplant. 2007;13(4):486–92.

    Article  PubMed  Google Scholar 

  96. Moskowitz CH, Nimer SD, Glassman JR, Portlock CS, Yahalom J, Straus DJ, et al. The International Prognostic Index predicts for outcome following autologous stem cell transplantation in patients with relapsed and primary refractory intermediate-grade lymphoma. Bone Marrow Transplant. 1999; 23(6):561–7.

    Article  CAS  PubMed  Google Scholar 

  97. Buske C, Hoster E, Dreyling M, Hasford J, Unterhalt M, Hiddemann W. The Follicular Lymphoma International Prognostic Index (FLIPI) separates high-risk from intermediate- or low-risk patients with advanced-stage follicular lymphoma treated front-line with rituximab and the combination of cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) with respect to treatment outcome. Blood. 2006;108(5):1504–8.

    Article  CAS  PubMed  Google Scholar 

  98. Solal-Celigny P, Roy P, Colombat P, White J, Armitage JO, Arranz-Saez R, et al. Follicular lymphoma international prognostic index. Blood. 2004;104(5):1258–65.

    Article  CAS  PubMed  Google Scholar 

  99. Zelenetz AD, Abramson JS, Advani RH, Andreadis CB, Byrd JC, Czuczman MS, et al. NCCN clinical practice guidelines in oncology: non-Hodgkin’s lymphomas. J Natl Compr Cancer Netw. 2010; 8(3):288–334.

    Article  Google Scholar 

  100. Cheson BD, Rummel MJ. Bendamustine: rebirth of an old drug. J Clin Oncol. 2009;27(9):1492–501.

    Article  CAS  PubMed  Google Scholar 

  101. Coiffier B. Treatment of non-Hodgkin’s lymphoma: a look over the past decade. Clin Lymphoma Myeloma. 2006;7 Suppl 1:S7–13.

    Article  CAS  PubMed  Google Scholar 

  102. Mihelic R, Kaufman J, Lonial S, Flowers C. Maintenance therapy in lymphoma. Clin Lymphoma Myeloma. 2007;7(8):507–13.

    Article  CAS  PubMed  Google Scholar 

  103. Salles GA. Clinical features, prognosis and treatment of follicular lymphoma. Hematol/Educ Pro Am Soc Hematol Am Soc Hematol Educ Prog. 2007:216–25.

    Google Scholar 

  104. Tageja N, Padheye S, Dandawate P, Al-Katib A, Mohammad RM. New targets for the treatment of follicular lymphoma. J Hematol Oncol. 2009;2:50. Pubmed Central PMCID: 2805680.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Winter JN. Defining the role of immunotherapy and radioimmunotherapy in the treatment of low-grade lymphoma. Curr Opin Hematol. 2007;14(4):360–8.

    Article  CAS  PubMed  Google Scholar 

  106. Wilson W, Armitage J. Non-Hodgkin’s lymphoma. Abeloff M, Armitage J, Niederhuber J, Kastan M, McKenna W, editors, editors. Philadelphia: Churchill Livingstone Elsevier; 2008.

    Google Scholar 

  107. Ardeshna KM, Smith P, Norton A, Hancock BW, Hoskin PJ, MacLennan KA, et al. Long-term effect of a watch and wait policy versus immediate systemic treatment for asymptomatic advanced-stage non-Hodgkin lymphoma: a randomised controlled trial. Lancet. 2003;362(9383):516–22.

    Article  CAS  PubMed  Google Scholar 

  108. Solal-Celigny P, Bellei M, Marcheselli L, Pesce EA, Pileri S, McLaughlin P, et al. Watchful waiting in low-tumor burden follicular lymphoma in the rituximab era: results of an F2-study database. J Clin Oncol. 2012;30(31):3848–53.

    Article  PubMed  Google Scholar 

  109. Sousou T, Friedberg J. Rituximab in indolent lymphomas. Semin Hematol. 2010;47(2):133–42. Pubmed Central PMCID: 2848176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Colombat P, Brousse N, Morschhauser F, Franchi-Rezgui P, Soubeyran P, Delwail V, et al. editors. Single treatment with rituximab monotherapy for low-tumor burden follicular lymphoma (FL): survival analyses with extended follow-up (F/up) of 7 years. ASH Annual Meeting Abstracts; Blood. 2006;108:486

    Google Scholar 

  111. Colombat P, Salles G, Brousse N, Eftekhari P, Soubeyran P, Delwail V, et al. Rituximab (anti-CD20 monoclonal antibody) as single first-line therapy for patients with follicular lymphoma with a low tumor burden: clinical and molecular evaluation. Blood. 2001;97(1):101–6.

    Article  CAS  PubMed  Google Scholar 

  112. McLaughlin P, Grillo-Lopez AJ, Link BK, Levy R, Czuczman MS, Williams ME, et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol. 1998;16(8):2825–33.

    Article  CAS  PubMed  Google Scholar 

  113. Czuczman MS, Weaver R, Alkuzweny B, Berlfein J, Grillo-Lopez AJ. Prolonged clinical and molecular remission in patients with low-grade or follicular non-Hodgkin’s lymphoma treated with rituximab plus CHOP chemotherapy: 9-year follow-up. J Clin Oncol. 2004;22(23):4711–6.

    Article  CAS  PubMed  Google Scholar 

  114. Forstpointner R, Dreyling M, Repp R, Hermann S, Hanel A, Metzner B, et al. The addition of rituximab to a combination of fludarabine, cyclophosphamide, mitoxantrone (FCM) significantly increases the response rate and prolongs survival as compared with FCM alone in patients with relapsed and refractory follicular and mantle cell lymphomas: results of a prospective randomized study of the German Low-Grade Lymphoma Study Group. Blood. 2004;104(10):3064–71.

    Article  CAS  PubMed  Google Scholar 

  115. Marcus R, Imrie K, Belch A, Cunningham D, Flores E, Catalano J, et al. CVP chemotherapy plus rituximab compared with CVP as first-line treatment for advanced follicular lymphoma. Blood. 2005;105(4):1417–23.

    Article  CAS  PubMed  Google Scholar 

  116. Zinzani PL, Pulsoni A, Perrotti A, Soverini S, Zaja F, De Renzo A, et al. Fludarabine plus mitoxantrone with and without rituximab versus CHOP with and without rituximab as front-line treatment for patients with follicular lymphoma. J Clin Oncol. 2004; 22(13):2654–61.

    Article  CAS  PubMed  Google Scholar 

  117. van Oers MH, Klasa R, Marcus RE, Wolf M, Kimby E, Gascoyne RD, et al. Rituximab maintenance improves clinical outcome of relapsed/resistant follicular non-Hodgkin lymphoma in patients both with and without rituximab during induction: results of a prospective randomized phase 3 intergroup trial. Blood. 2006;108(10):3295–301.

    Article  PubMed  CAS  Google Scholar 

  118. Hochster H, Weller E, Gascoyne RD, Habermann TM, Gordon LI, Ryan T, et al. Maintenance rituximab after cyclophosphamide, vincristine, and prednisone prolongs progression-free survival in advanced indolent lymphoma: results of the randomized phase III ECOG1496 Study. J Clin Oncol. 2009; 27(10):1607–14. Pubmed Central PMCID: 2668968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Schulz H, Bohlius JF, Trelle S, Skoetz N, Reiser M, Kober T, et al. Immunochemotherapy with rituximab and overall survival in patients with indolent or mantle cell lymphoma: a systematic review and meta-analysis. J Natl Cancer Inst. 2007;99(9):706–14.

    Article  CAS  PubMed  Google Scholar 

  120. Salles G, Seymour JF, Offner F, Lopez-Guillermo A, Belada D, Xerri L, et al. Rituximab maintenance for 2 years in patients with high tumour burden follicular lymphoma responding to rituximab plus chemotherapy (PRIMA): a phase 3, randomised controlled trial. Lancet. 2011;377(9759):42–51.

    Article  CAS  PubMed  Google Scholar 

  121. Press OW, Unger JM, Rimsza LM, Friedberg JW, LeBlanc M, Czuczman MS, et al. Phase III randomized intergroup trial of CHOP plus rituximab compared with CHOP chemotherapy plus (131)iodine-tositumomab for previously untreated follicular non-Hodgkin lymphoma: SWOG S0016. J Clin Oncol. 2013;31(3):314–20. Pubmed Central PMCID: 3732010.

    Article  CAS  PubMed  Google Scholar 

  122. Samaniego F, Berkova Z, Romaguera JE, Fowler N, Fanale MA, Pro B, et al. 90Y-ibritumomab tiuxetan radiotherapy as first-line therapy for early stage low-grade B-cell lymphomas, including bulky disease. Br J Haematol. 2014;167(2):207–13.

    Article  CAS  PubMed  Google Scholar 

  123. Scholz CW, Pinto A, Linkesch W, Linden O, Viardot A, Keller U, et al. (90)Yttrium-ibritumomab-tiuxetan as first-line treatment for follicular lymphoma: 30 months of follow-up data from an international multicenter phase II clinical trial. J Clin Oncol. 2013;31(3):308–13.

    Article  CAS  PubMed  Google Scholar 

  124. van Meerten T, Hagenbeek A. CD20-targeted therapy: the next generation of antibodies. Semin Hematol. 2010;47(2):199–210.

    Article  PubMed  CAS  Google Scholar 

  125. Davis TA, Grillo-Lopez AJ, White CA, McLaughlin P, Czuczman MS, Link BK, et al. Rituximab anti-CD20 monoclonal antibody therapy in non-Hodgkin’s lymphoma: safety and efficacy of re-treatment. J Clin Oncol. 2000; 18(17):3135–43.

    Article  CAS  PubMed  Google Scholar 

  126. Davis TA, White CA, Grillo-Lopez AJ, Velasquez WS, Link B, Maloney DG, et al. Single-agent monoclonal antibody efficacy in bulky non-Hodgkin’s lymphoma: results of a phase II trial of rituximab. J Clin Oncol. 1999;17(6):1851–7.

    Article  CAS  PubMed  Google Scholar 

  127. Davis TA, Kaminski MS, Leonard JP, Hsu FJ, Wilkinson M, Zelenetz A, et al. The radioisotope contributes significantly to the activity of radioimmunotherapy. Clin Cancer Res. 2004;10(23):7792–8.

    Article  CAS  PubMed  Google Scholar 

  128. Witzig TE, Gordon LI, Cabanillas F, Czuczman MS, Emmanouilides C, Joyce R, et al. Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. J Clin Oncol. 2002; 20(10):2453–63.

    Article  CAS  PubMed  Google Scholar 

  129. Rohatiner AZ, Nadler L, Davies AJ, Apostolidis J,Neuberg D, Matthews J, et al. Myeloablative therapy with autologous bone marrow transplantation for follicular lymphoma at the time of second or subsequent remission: long-term follow-up. J Clin Oncol. 2007;25(18):2554–9.

    Article  PubMed  Google Scholar 

  130. Sebban C, Brice P, Delarue R, Haioun C, Souleau B, Mounier N, et al. Impact of rituximab and/or high-dose therapy with autotransplant at time of relapse in patients with follicular lymphoma: a GELA study. J Clin Oncol. 2008;26(21):3614–20.

    Article  CAS  PubMed  Google Scholar 

  131. Coiffier B, Lepage E, Briere J, Herbrecht R, Tilly H, Bouabdallah R, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002;346(4):235–42.

    Article  CAS  PubMed  Google Scholar 

  132. Feugier P, Van Hoof A, Sebban C, Solal-Celigny P, Bouabdallah R, Ferme C, et al. Long-term results of the R-CHOP study in the treatment of elderly patients with diffuse large B-cell lymphoma: a study by the Groupe d’Etude des Lymphomes de l’Adulte. J Clin Oncol. 2005;23(18):4117–26.

    Article  CAS  PubMed  Google Scholar 

  133. Habermann TM, Weller EA, Morrison VA, Gascoyne RD, Cassileth PA, Cohn JB, et al. Rituximab-CHOP versus CHOP alone or with maintenance rituximab in older patients with diffuse large B-cell lymphoma. J Clin Oncol. 2006;24(19):3121–7.

    Article  CAS  PubMed  Google Scholar 

  134. Cunningham D, Hawkes EA, Jack A, Qian W, Smith P, Mouncey P, et al. Rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisolone in patients with newly diagnosed diffuse large B-cell non-Hodgkin lymphoma: a phase 3 comparison of dose intensification with 14-day versus 21-day cycles. Lancet. 2013;381(9880):1817–26.

    Article  CAS  PubMed  Google Scholar 

  135. Delarue R, Tilly H, Mounier N, Petrella T, Salles G, Thieblemont C, et al. Dose-dense rituximab-CHOP compared with standard rituximab-CHOP in elderly patients with diffuse large B-cell lymphoma (the LNH03-6B study): a randomised phase 3 trial. Lancet Oncol. 2013;14(6):525–33.

    Article  CAS  PubMed  Google Scholar 

  136. Ruan J, Martin P, Furman RR, Lee SM, Cheung K, Vose JM, et al. Bortezomib plus CHOP-rituximab for previously untreated diffuse large B-cell lymphoma and mantle cell lymphoma. J Clin Oncol. 2011;29(6):690–7.

    Article  CAS  PubMed  Google Scholar 

  137. Vitolo U, Chiappella A, Franceschetti S, Carella AM, Baldi I, Inghirami G, et al. Lenalidomide plus R-CHOP21 in elderly patients with untreated diffuse large B-cell lymphoma: results of the REAL07 open-label, multicentre, phase 2 trial. Lancet Oncol. 2014;15(7):730–7.

    Article  CAS  PubMed  Google Scholar 

  138. Younes A, Thieblemont C, Morschhauser F, Flinn I, Friedberg JW, Amorim S, et al. Combination of ibrutinib with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) for treatment-naive patients with CD20-positive B-cell non-Hodgkin lymphoma: a non-randomised, phase 1b study. Lancet Oncol. 2014;15(9):1019–26.

    Article  CAS  PubMed  Google Scholar 

  139. Howlett C, Snedecor SJ, Landsburg DJ, Svoboda J, Chong EA, Schuster SJ, et al. Front-line, dose-escalated immunochemotherapy is associated with a significant progression-free survival advantage in patients with double-hit lymphomas: a systematic review and meta-analysis. Br J Haematol. 2015;170(4):504–14.

    Article  PubMed  Google Scholar 

  140. Petrich AM, Gandhi M, Jovanovic B, Castillo JJ, Rajguru S, Yang DT, et al. Impact of induction regimen and stem cell transplantation on outcomes in double-hit lymphoma: a multicenter retrospective analysis. Blood. 2014;124(15):2354–61.

    Article  CAS  PubMed  Google Scholar 

  141. Greb A, Bohlius J, Schiefer D, Schwarzer G, Schulz H, Engert A. High-dose chemotherapy with autologous stem cell transplantation in the first line treatment of aggressive non-Hodgkin lymphoma (NHL) in adults. Cochrane Database Syst Rev. 2008;1:CD004024.

    Google Scholar 

  142. Zinzani PL, Bendandi M, Martelli M, Falini B, Sabattini E, Amadori S, et al. Anaplastic large-cell lymphoma: clinical and prognostic evaluation of 90 adult patients. J Clin Oncol. 1996;14(3):955–62.

    Article  CAS  PubMed  Google Scholar 

  143. Escalon MP, Liu NS, Yang Y, Hess M, Walker PL, Smith TL, et al. Prognostic factors and treatment of patients with T-cell non-Hodgkin lymphoma: the M. D. Anderson Cancer Center experience. Cancer. 2005;103(10):2091–8.

    Article  PubMed  Google Scholar 

  144. Simon A, Peoch M, Casassus P, Deconinck E, Colombat P, Desablens B, et al. Upfront VIP-reinforced-ABVD (VIP-rABVD) is not superior to CHOP/21 in newly diagnosed peripheral T cell lymphoma. Results of the randomized phase III trial GOELAMS-LTP95. Br J Haematol. 2010;151(2):159–66.

    Article  PubMed  Google Scholar 

  145. Bruns I, Fox F, Reinecke P, Kobbe G, Kronenwett R, Jung G, et al. Complete remission in a patient with relapsed angioimmunoblastic T-cell lymphoma following treatment with bevacizumab. Leukemia. 2005;19(11):1993–5.

    Article  CAS  PubMed  Google Scholar 

  146. Piekarz RL, Robey RW, Zhan Z, Kayastha G, Sayah A, Abdeldaim AH, et al. T-cell lymphoma as a model for the use of histone deacetylase inhibitors in cancer therapy: impact of depsipeptide on molecular markers, therapeutic targets, and mechanisms of resistance. Blood. 2004;103(12):4636–43.

    Article  CAS  PubMed  Google Scholar 

  147. Dearden C. Alemtuzumab in peripheral T-cell malignancies. Cancer Biother Radiopharm. 2004; 19(4):391–8.

    Article  CAS  PubMed  Google Scholar 

  148. Ishida T, Joh T, Uike N, Yamamoto K, Utsunomiya A, Yoshida S, et al. Defucosylated anti-CCR4 monoclonal antibody (KW-0761) for relapsed adult T-cell leukemia-lymphoma: a multicenter phase II study. J Clin Oncol. 2012;30(8):837–42.

    Article  CAS  PubMed  Google Scholar 

  149. Ansell SM. Brentuximab vedotin. Blood. 2014;124(22):3197–200.

    Article  CAS  PubMed  Google Scholar 

  150. Richman SD, Levenson SM, Jones AE, Johnston GS. Radionuclide studies in Hodgkin’s disease and lymphomas. Semin Nucl Med. 1975;5(1):103–8.

    Article  CAS  PubMed  Google Scholar 

  151. Adler S, Parthasarathy KL, Bakshi SP, Stutzman L. Gallium-67-citrate scanning for the localization and staging of lymphomas. J Nucl Med. 1975;16(4):255–60.

    CAS  PubMed  Google Scholar 

  152. Even-Sapir E, Bar-Shalom R, Israel O, Frenkel A, Iosilevsky G, Haim N, et al. Single-photon emission computed tomography quantitation of gallium citrate uptake for the differentiation of lymphoma from benign hilar uptake. J Clin Oncol. 1995;13(4):942–6.

    Article  CAS  PubMed  Google Scholar 

  153. Front D, Bar-Shalom R, Mor M, Haim N, Epelbaum R, Frenkel A, et al. Hodgkin disease: prediction of outcome with 67Ga scintigraphy after one cycle of chemotherapy. Radiology. 1999;210(2):487–91.

    Article  CAS  PubMed  Google Scholar 

  154. Front D, Bar-Shalom R, Mor M, Haim N, Epelbaum R, Frenkel A, et al. Aggressive non-Hodgkin lymphoma: early prediction of outcome with 67Ga scintigraphy. Radiology. 2000;214(1):253–7.

    Article  CAS  PubMed  Google Scholar 

  155. Israel O, Front D, Lam M, Ben-Haim S, Kleinhaus U, Ben-Shachar M, et al. Gallium 67 imaging in monitoring lymphoma response to treatment. Cancer. 1988;61(12):2439–43.

    Article  CAS  PubMed  Google Scholar 

  156. Israel O, Mor M, Epelbaum R, Frenkel A, Haim N, Dann EJ, et al. Clinical pretreatment risk factors and Ga-67 scintigraphy early during treatment for prediction of outcome of patients with aggressive non-Hodgkin lymphoma. Cancer. 2002;94(4):873–8.

    Article  PubMed  Google Scholar 

  157. Janicek M, Kaplan W, Neuberg D, Canellos GP, Shulman LN, Shipp MA. Early restaging gallium scans predict outcome in poor-prognosis patients with aggressive non-Hodgkin’s lymphoma treated with high-dose CHOP chemotherapy. J Clin Oncol. 1997;15(4):1631–7.

    Article  CAS  PubMed  Google Scholar 

  158. Bekerman C, Moran EM, Hoffer PB, Hendrix RW, Gottschalk A. Scintigraphic evaluation of lymphoma: a comparative study of 67Ga-citrate and 111In-Bleomycin. Radiology. 1977;123(3):687–94.

    Article  CAS  PubMed  Google Scholar 

  159. Jones SE, Lilien DL, O’Mara RE, Durie BG, Salmon SE. Indium-111 bleomycin tumor scanning in lymphoma. Med Pediatr Oncol. 1975;1(1):11–21.

    Article  CAS  PubMed  Google Scholar 

  160. Bar-Shalom R, Mor M, Yefremov N, Goldsmith SJ. The value of Ga-67 scintigraphy and F-18 fluorodeoxyglucose positron emission tomography in staging and monitoring the response of lymphoma to treatment. Semin Nucl Med. 2001;31(3):177–90.

    Article  CAS  PubMed  Google Scholar 

  161. Friedberg JW, Fischman A, Neuberg D, Kim H, Takvorian T, Ng AK, et al. FDG-PET is superior to gallium scintigraphy in staging and more sensitive in the follow-up of patients with de novo Hodgkin lymphoma: a blinded comparison. Leuk Lymphoma. 2004;45(1):85–92.

    Article  PubMed  Google Scholar 

  162. Kostakoglu L, Leonard JP, Kuji I, Coleman M, Vallabhajosula S, Goldsmith SJ. Comparison of fluorine-18 fluorodeoxyglucose positron emission tomography and Ga-67 scintigraphy in evaluation of lymphoma. Cancer. 2002;94(4):879–88.

    Article  PubMed  Google Scholar 

  163. Tsukamoto N, Kojima M, Hasegawa M, Oriuchi N, Matsushima T, Yokohama A, et al. The usefulness of (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG-PET) and a comparison of (18)F-FDG-pet with (67)gallium scintigraphy in the evaluation of lymphoma: relation to histologic subtypes based on the World Health Organization classification. Cancer. 2007;110(3):652–9.

    Article  PubMed  Google Scholar 

  164. Yamamoto F, Tsukamoto E, Nakada K, Takei T, Zhao S, Asaka M, et al. 18F-FDG PET is superior to 67Ga SPECT in the staging of non-Hodgkin’s lymphoma. Ann Nucl Med. 2004;18(6):519–26.

    Article  PubMed  Google Scholar 

  165. Weiler-Sagie M, Bushelev O, Epelbaum R, Dann EJ, Haim N, Avivi I, et al. (18)F-FDG avidity in lymphoma readdressed: a study of 766 patients. J Nucl Med. 2010;51(1):25–30.

    Article  PubMed  Google Scholar 

  166. Lapela M, Leskinen S, Minn HR, Lindholm P, Klemi PJ, Soderstrom KO, et al. Increased glucose metabolism in untreated non-Hodgkin’s lymphoma: a study with positron emission tomography and fluorine-18-fluorodeoxyglucose. Blood. 1995;86(9):3522–7.

    CAS  PubMed  Google Scholar 

  167. Rodriguez M, Rehn S, Ahlstrom H, Sundstrom C, Glimelius B. Predicting malignancy grade with PET in non-Hodgkin’s lymphoma. J Nucl Med. 1995;36(10):1790–6.

    CAS  PubMed  Google Scholar 

  168. Schoder H, Noy A, Gonen M, Weng L, Green D, Erdi YE, et al. Intensity of 18fluorodeoxyglucose uptake in positron emission tomography distinguishes between indolent and aggressive non-Hodgkin’s lymphoma. J Clin Oncol. 2005;23(21):4643–51.

    Article  PubMed  Google Scholar 

  169. Bruzzi JF, Macapinlac H, Tsimberidou AM, Truong MT, Keating MJ, Marom EM, et al. Detection of Richter’s transformation of chronic lymphocytic leukemia by PET/CT. J Nucl Med. 2006;47(8):1267–73.

    PubMed  Google Scholar 

  170. Bodet-Milin C, Kraeber-Bodere F, Moreau P, Campion L, Dupas B, Le Gouill S. Investigation of FDG-PET/CT imaging to guide biopsies in the detection of histological transformation of indolent lymphoma. Haematologica. 2008;93(3):471–2.

    Article  PubMed  Google Scholar 

  171. Bangerter M, Moog F, Buchmann I, Kotzerke J, Griesshammer M, Hafner M, et al. Whole-body 2-[18F]-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) for accurate staging of Hodgkin’s disease. Ann Oncol. 1998;9(10):1117–22.

    Article  CAS  PubMed  Google Scholar 

  172. Jerusalem G, Beguin Y, Fassotte MF, Najjar F, Paulus P, Rigo P, et al. Whole-body positron emission tomography using 18F-fluorodeoxyglucose compared to standard procedures for staging patients with Hodgkin’s disease. Haematologica. 2001;86(3):266–73.

    CAS  PubMed  Google Scholar 

  173. Moog F, Bangerter M, Diederichs CG, Guhlmann A, Merkle E, Frickhofen N, et al. Extranodal malignant lymphoma: detection with FDG PET versus CT. Radiology. 1998;206(2):475–81.

    Article  CAS  PubMed  Google Scholar 

  174. Partridge S, Timothy A, O’Doherty MJ, Hain SF, Rankin S, Mikhaeel G. 2-Fluorine-18-fluoro-2-deoxy-D glucose positron emission tomography in the pretreatment staging of Hodgkin’s disease: influence on patient management in a single institution. Ann Oncol. 2000;11(10):1273–9.

    Article  CAS  PubMed  Google Scholar 

  175. Weihrauch MR, Re D, Bischoff S, Dietlein M, Scheidhauer K, Krug B, et al. Whole-body positron emission tomography using 18F-fluorodeoxyglucose for initial staging of patients with Hodgkin’s disease. Ann Hematol. 2002;81(1):20–5.

    Article  CAS  PubMed  Google Scholar 

  176. Carr R, Barrington SF, Madan B, O’Doherty MJ, Saunders CA, van der Walt J, et al. Detection of lymphoma in bone marrow by whole-body positron emission tomography. Blood. 1998;91(9):3340–6.

    CAS  PubMed  Google Scholar 

  177. Moog F, Bangerter M, Kotzerke J, Guhlmann A, Frickhofen N, Reske SN. 18-F-fluorodeoxyglucose-positron emission tomography as a new approach to detect lymphomatous bone marrow. J Clin Oncol. 1998;16(2):603–9.

    Article  CAS  PubMed  Google Scholar 

  178. El-Galaly TC, d’Amore F, Mylam KJ, de Nully BP, Bogsted M, Bukh A, et al. Routine bone marrow biopsy has little or no therapeutic consequence for positron emission tomography/computed tomography-staged treatment-naive patients with Hodgkin lymphoma. J Clin Oncol. 2012;30(36):4508–14.

    Article  PubMed  Google Scholar 

  179. Moulin-Romsee G, Hindie E, Cuenca X, Brice P, Decaudin D, Benamor M, et al. (18)F-FDG PET/CT bone/bone marrow findings in Hodgkin’s lymphoma may circumvent the use of bone marrow trephine biopsy at diagnosis staging. Eur J Nucl Med Mol Imaging. 2010;37(6):1095–105.

    Article  PubMed  Google Scholar 

  180. Pakos EE, Fotopoulos AD, Ioannidis JP. 18F-FDG PET for evaluation of bone marrow infiltration in staging of lymphoma: a meta-analysis. J Nucl Med. 2005;46(6):958–63.

    PubMed  Google Scholar 

  181. Adams HJ, Kwee TC, de Keizer B, Fijnheer R, de Klerk JM, Nievelstein RA. FDG PET/CT for the detection of bone marrow involvement in diffuse large B-cell lymphoma: systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2014; 41(3):565–74.

    Article  CAS  PubMed  Google Scholar 

  182. Berthet L, Cochet A, Kanoun S, Berriolo-Riedinger A, Humbert O, Toubeau M, et al. In newly diagnosed diffuse large B-cell lymphoma, determination of bone marrow involvement with 18F-FDG PET/CT provides better diagnostic performance and prognostic stratification than does biopsy. J Nucl Med. 2013;54(8):1244–50.

    Article  CAS  PubMed  Google Scholar 

  183. Paone G, Itti E, Haioun C, Gaulard P, Dupuis J, Lin C, et al. Bone marrow involvement in diffuse large B-cell lymphoma: correlation between FDG-PET uptake and type of cellular infiltrate. Eur J Nucl Med Mol Imaging. 2009;36(5):745–50.

    Article  PubMed  Google Scholar 

  184. Nakamoto Y, Cohade C, Tatsumi M, Hammoud D, Wahl RL. CT appearance of bone metastases detected with FDG PET as part of the same PET/CT examination. Radiology. 2005;237(2):627–34.

    Article  PubMed  Google Scholar 

  185. Buchmann I, Reinhardt M, Elsner K, Bunjes D, Altehoefer C, Finke J, et al. 2-(fluorine-18)fluoro-2-deoxy-D-glucose positron emission tomography in the detection and staging of malignant lymphoma. A bicenter trial. Cancer. 2001;91(5):889–99.

    Article  CAS  PubMed  Google Scholar 

  186. Schoder H, Meta J, Yap C, Ariannejad M, Rao J, Phelps ME, et al. Effect of whole-body (18)F-FDG PET imaging on clinical staging and management of patients with malignant lymphoma. J Nucl Med. 2001;42(8):1139–43.

    CAS  PubMed  Google Scholar 

  187. Blum RH, Seymour JF, Wirth A, MacManus M, Hicks RJ. Frequent impact of [18F]fluorodeoxyglucose positron emission tomography on the staging and management of patients with indolent non-Hodgkin’s lymphoma. Clin Lymphoma. 2003; 4(1):43–9.

    Article  PubMed  Google Scholar 

  188. Janikova A, Bolcak K, Pavlik T, Mayer J, Kral Z. Value of [18F]fluorodeoxyglucose positron emission tomography in the management of follicular lymphoma: the end of a dilemma? Clin Lymphoma Myeloma. 2008;8(5):287–93.

    Article  PubMed  Google Scholar 

  189. Jerusalem G, Beguin Y, Najjar F, Hustinx R, Fassotte MF, Rigo P, et al. Positron emission tomography (PET) with 18F-fluorodeoxyglucose (18F-FDG) for the staging of low-grade non-Hodgkin’s lymphoma (NHL). Ann Oncol. 2001;12(6):825–30.

    Article  CAS  PubMed  Google Scholar 

  190. Karam M, Novak L, Cyriac J, Ali A, Nazeer T, Nugent F. Role of fluorine-18 fluoro-deoxyglucose positron emission tomography scan in the evaluation and follow-up of patients with low-grade lymphomas. Cancer. 2006;107(1):175–83.

    Article  PubMed  Google Scholar 

  191. Tatsumi M, Cohade C, Nakamoto Y, Fishman EK, Wahl RL. Direct comparison of FDG PET and CT findings in patients with lymphoma: initial experience. Radiology. 2005;237(3):1038–45.

    Article  PubMed  Google Scholar 

  192. Allen-Auerbach M, Quon A, Weber WA, Obrzut S, Crawford T, Silverman DH, et al. Comparison between 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography and positron emission tomography/computed tomography hardware fusion for staging of patients with lymphoma. Mol Imaging Biol. 2004;6(6):411–6.

    Article  PubMed  Google Scholar 

  193. Chalaye J, Luciani A, Enache C, Beaussart P, Lhermite C, Evangelista E, et al. Clinical impact of contrast-enhanced computed tomography combined with low-dose (18)F-fluorodeoxyglucose positron emission tomography/computed tomography on routine lymphoma patient management. Leuk Lymphoma. 2014;55(12):2887–92.

    Article  CAS  PubMed  Google Scholar 

  194. Pinilla I, Gomez-Leon N, Del Campo-Del Val L, Hernandez-Maraver D, Rodriguez-Vigil B, Jover-Diaz R, et al. Diagnostic value of CT, PET and combined PET/CT performed with low-dose unenhanced CT and full-dose enhanced CT in the initial staging of lymphoma. Q J Nucl Med Mol Imaging Off Publ Ital Assoc Nucl Med. 2011;55(5):567–75.

    CAS  Google Scholar 

  195. Schaefer NG, Hany TF, Taverna C, Seifert B, Stumpe KD, von Schulthess GK, et al. Non-Hodgkin lymphoma and Hodgkin disease: coregistered FDG PET and CT at staging and restaging – do we need contrast-enhanced CT? Radiology. 2004;232(3):823–9.

    Article  PubMed  Google Scholar 

  196. Jochelson M, Mauch P, Balikian J, Rosenthal D, Canellos G. The significance of the residual mediastinal mass in treated Hodgkin’s disease. J Clin Oncol. 1985;3(5):637–40.

    Article  CAS  PubMed  Google Scholar 

  197. Jerusalem G, Beguin Y, Fassotte MF, Najjar F, Paulus P, Rigo P, et al. Whole-body positron emission tomography using 18F-fluorodeoxyglucose for posttreatment evaluation in Hodgkin’s disease and non-Hodgkin’s lymphoma has higher diagnostic and prognostic value than classical computed tomography scan imaging. Blood. 1999;94(2):429–33.

    CAS  PubMed  Google Scholar 

  198. Naumann R, Vaic A, Beuthien-Baumann B, Bredow J, Kropp J, Kittner T, et al. Prognostic value of positron emission tomography in the evaluation of post-treatment residual mass in patients with Hodgkin’s disease and non-Hodgkin’s lymphoma. Br J Haematol. 2001;115(4):793–800.

    Article  CAS  PubMed  Google Scholar 

  199. Spaepen K, Stroobants S, Dupont P, Thomas J, Vandenberghe P, Balzarini J, et al. Can positron emission tomography with [(18)F]-fluorodeoxyglucose after first-line treatment distinguish Hodgkin’s disease patients who need additional therapy from others in whom additional therapy would mean avoidable toxicity? Br J Haematol. 2001;115(2):272–8.

    Article  CAS  PubMed  Google Scholar 

  200. Spaepen K, Stroobants S, Dupont P, Van Steenweghen S, Thomas J, Vandenberghe P, et al. Prognostic value of positron emission tomography (PET) with fluorine-18 fluorodeoxyglucose ([18F]FDG) after first-line chemotherapy in non-Hodgkin’s lymphoma: is [18F]FDG-PET a valid alternative to conventional diagnostic methods? J Clin Oncol. 2001;19(2):414–9.

    Article  CAS  PubMed  Google Scholar 

  201. Zinzani PL, Magagnoli M, Chierichetti F, Zompatori M, Garraffa G, Bendandi M, et al. The role of positron emission tomography (PET) in the management of lymphoma patients. Ann Oncol. 1999;10(10):1181–4.

    Article  CAS  PubMed  Google Scholar 

  202. Humm JL, Rosenfeld A, Del Guerra A. From PET detectors to PET scanners. Eur J Nucl Med Mol Imaging. 2003;30(11):1574–97.

    Article  PubMed  Google Scholar 

  203. Kasamon YL, Jones RJ, Wahl RL. Integrating PET and PET/CT into the risk-adapted therapy of lymphoma. J Nucl Med. 2007;48 Suppl 1:19S–27.

    CAS  PubMed  Google Scholar 

  204. Engles JM, Quarless SA, Mambo E, Ishimori T, Cho SY, Wahl RL. Stunning and its effect on 3H-FDG uptake and key gene expression in breast cancer cells undergoing chemotherapy. J Nucl Med. 2006;47(4):603–8.

    CAS  PubMed  Google Scholar 

  205. Castellucci P, Zinzani P, Nanni C, Farsad M, Moretti A, Alinari L, et al. 18F-FDG PET early after radiotherapy in lymphoma patients. Cancer Biother Radiopharm. 2004;19(5):606–12.

    PubMed  Google Scholar 

  206. Jacene HA, Filice R, Kasecamp W, Wahl RL. 18F-FDG PET/CT for monitoring the response of lymphoma to radioimmunotherapy. J Nucl Med. 2009;50(1):8–17.

    Article  CAS  PubMed  Google Scholar 

  207. Torizuka T, Zasadny KR, Kison PV, Rommelfanger SG, Kaminski MS, Wahl RL. Metabolic response of non-Hodgkin’s lymphoma to 131I-anti-B1 radioimmunotherapy: evaluation with FDG PET. J Nucl Med. 2000;41(6):999–1005.

    CAS  PubMed  Google Scholar 

  208. Cheson BD, Horning SJ, Coiffier B, Shipp MA, Fisher RI, Connors JM, et al. Report of an international workshop to standardize response criteria for non-Hodgkin’s lymphomas. NCI Sponsored International Working Group. J Clin Oncol. 1999; 17(4):1244.

    Article  CAS  PubMed  Google Scholar 

  209. Cheson BD, Pfistner B, Juweid ME, Gascoyne RD, Specht L, Horning SJ, et al. Revised response criteria for malignant lymphoma. J Clin Oncol. 2007; 25(5):579–86.

    Article  PubMed  Google Scholar 

  210. Juweid ME, Wiseman GA, Vose JM, Ritchie JM, Menda Y, Wooldridge JE, et al. Response assessment of aggressive non-Hodgkin’s lymphoma by integrated International Workshop Criteria and fluorine-18-fluorodeoxyglucose positron emission tomography. J Clin Oncol. 2005;23(21):4652–61.

    Article  PubMed  Google Scholar 

  211. Brepoels L, Stroobants S, De Wever W, Spaepen K, Vandenberghe P, Thomas J, et al. Aggressive and indolent non-Hodgkin’s lymphoma: response assessment by integrated international workshop criteria. Leuk Lymphoma. 2007;48(8):1522–30.

    Article  PubMed  Google Scholar 

  212. Brepoels L, Stroobants S, De Wever W, Spaepen K, Vandenberghe P, Thomas J, et al. Hodgkin lymphoma: response assessment by revised international workshop criteria. Leuk Lymphoma. 2007; 48(8):1539–47.

    Article  PubMed  Google Scholar 

  213. Markova J, Kahraman D, Kobe C, Skopalova M, Mocikova H, Klaskova K, et al. Role of [18F]-fluoro-2-deoxy-D-glucose positron emission tomography in early and late therapy assessment of patients with advanced Hodgkin lymphoma treated with bleomycin, etoposide, adriamycin, cyclophosphamide, vincristine, procarbazine and prednisone. Leuk Lymphoma. 2012;53(1):64–70.

    Article  CAS  PubMed  Google Scholar 

  214. Sher DJ, Mauch PM, Van Den Abbeele A, LaCasce AS, Czerminski J, Ng AK. Prognostic significance of mid- and post-ABVD PET imaging in Hodgkin’s lymphoma: the importance of involved-field radiotherapy. Ann Oncol. 2009;20(11):1848–53.

    Article  CAS  PubMed  Google Scholar 

  215. Zinzani PL, Rigacci L, Stefoni V, Broccoli A, Puccini B, Castagnoli A, et al. Early interim 18F-FDG PET in Hodgkin’s lymphoma: evaluation on 304 patients. Eur J Nucl Med Mol Imaging. 2012;39(1):4–12.

    Article  PubMed  Google Scholar 

  216. Meignan M, Gallamini A, Haioun C, Polliack A. Report on the second international workshop on interim positron emission tomography in lymphoma held in menton, France, 8–9 April 2010. Leuk Lymphoma. 2010;51(12):2171–80.

    Article  PubMed  Google Scholar 

  217. Meignan M, Gallamini A, Itti E, Barrington S, Haioun C, Polliack A. Report on the third international workshop on interim positron emission tomography in lymphoma held in menton, France, 26–27 September 2011 and menton 2011 consensus. Leuk Lymphoma. 2012;53(10):1876–81.

    Article  PubMed  Google Scholar 

  218. Biggi A, Gallamini A, Chauvie S, Hutchings M, Kostakoglu L, Gregianin M, et al. International validation study for interim PET in ABVD-treated, advanced-stage hodgkin lymphoma: interpretation criteria and concordance rate among reviewers. J Nucl Med. 2013;54(5):683–90.

    Article  CAS  PubMed  Google Scholar 

  219. Itti E, Meignan M, Berriolo-Riedinger A, Biggi A, Cashen AF, Vera P, et al. An international confirmatory study of the prognostic value of early PET/CT in diffuse large B-cell lymphoma: comparison between Deauville criteria and DeltaSUVmax. Eur J Nucl Med Mol Imaging. 2013;40(9):1312–20.

    Article  PubMed  Google Scholar 

  220. Juweid ME, Stroobants S, Hoekstra OS, Mottaghy FM, Dietlein M, Guermazi A, et al. Use of positron emission tomography for response assessment of lymphoma: consensus of the Imaging Subcommittee of International Harmonization Project in Lymphoma. J Clin Oncol. 2007;25(5):571–8.

    Article  PubMed  Google Scholar 

  221. Shankar LK, Hoffman JM, Bacharach S, Graham MM, Karp J, Lammertsma AA, et al. Consensus recommendations for the use of 18F-FDG PET as an indicator of therapeutic response in patients in National Cancer Institute Trials. J Nucl Med. 2006;47(6):1059–66.

    CAS  PubMed  Google Scholar 

  222. Boellaard R, Oyen WJ, Hoekstra CJ, Hoekstra OS, Visser EP, Willemsen AT, et al. The Netherlands protocol for standardisation and quantification of FDG whole body PET studies in multi-centre trials. Eur J Nucl Med Mol Imaging. 2008;35(12):2320–33.

    Article  PubMed  Google Scholar 

  223. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50 Suppl 1:122S–50. Pubmed Central PMCID: 2755245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Wahl RL, Zasadny K, Helvie M, Hutchins GD, Weber B, Cody R. Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation. J Clin Oncol. 1993;11(11):2101–11.

    Article  CAS  PubMed  Google Scholar 

  225. Haioun C, Itti E, Rahmouni A, Brice P, Rain JD, Belhadj K, et al. [18F]fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) in aggressive lymphoma: an early prognostic tool for predicting patient outcome. Blood. 2005;106(4):1376–81.

    Article  CAS  PubMed  Google Scholar 

  226. Hutchings M, Loft A, Hansen M, Pedersen LM, Buhl T, Jurlander J, et al. FDG-PET after two cycles of chemotherapy predicts treatment failure and progression-free survival in Hodgkin lymphoma. Blood. 2006;107(1):52–9.

    Article  CAS  PubMed  Google Scholar 

  227. Hutchings M, Mikhaeel NG, Fields PA, Nunan T, Timothy AR. Prognostic value of interim FDG-PET after two or three cycles of chemotherapy in Hodgkin lymphoma. Ann Oncol. 2005;16(7):1160–8.

    Article  CAS  PubMed  Google Scholar 

  228. Jerusalem G, Beguin Y, Fassotte MF, Najjar F, Paulus P, Rigo P, et al. Persistent tumor 18F-FDG uptake after a few cycles of polychemotherapy is predictive of treatment failure in non-Hodgkin’s lymphoma. Haematologica. 2000;85(6):613–8.

    CAS  PubMed  Google Scholar 

  229. Kostakoglu L, Coleman M, Leonard JP, Kuji I, Zoe H, Goldsmith SJ. PET predicts prognosis after 1 cycle of chemotherapy in aggressive lymphoma and Hodgkin’s disease. J Nucl Med. 2002;43(8):1018–27.

    PubMed  Google Scholar 

  230. Mikhaeel NG, Hutchings M, Fields PA, O’Doherty MJ, Timothy AR. FDG-PET after two to three cycles of chemotherapy predicts progression-free and overall survival in high-grade non-Hodgkin lymphoma. Ann Oncol. 2005;16(9):1514–23.

    Article  CAS  PubMed  Google Scholar 

  231. Spaepen K, Stroobants S, Dupont P, Vandenberghe P, Thomas J, de Groot T, et al. Early restaging positron emission tomography with (18)F-fluorodeoxyglucose predicts outcome in patients with aggressive non-Hodgkin’s lymphoma. Ann Oncol. 2002;13(9):1356–63.

    Article  CAS  PubMed  Google Scholar 

  232. Kasamon YL, Wahl RL. FDG PET and risk-adapted therapy in Hodgkin’s and non-Hodgkin’s lymphoma. Curr Opin Oncol. 2008;20(2):206–19. Pubmed Central PMCID: 3652336.

    Article  PubMed  PubMed Central  Google Scholar 

  233. Skipper HE, Schabel Jr FM, Wilcox WS. Experimental evaluation of potential anticancer agents. Xiii. On the criteria and kinetics associated with “Curability” of experimental leukemia. Cancer Chemother Rep. 1964;35:1–111.

    CAS  PubMed  Google Scholar 

  234. Kasamon YL, Wahl RL, Ziessman HA, Blackford AL, Goodman SN, Fidyk CA, et al. Phase II study of risk-adapted therapy of newly diagnosed, aggressive non-Hodgkin lymphoma based on midtreatment FDG-PET scanning. Biol Blood Marrow Transplant. 2009;15(2):242–8. Pubmed Central PMCID: 4020440.

    Article  PubMed  PubMed Central  Google Scholar 

  235. Dupuis J, Itti E, Rahmouni A, Hemery F, Gisselbrecht C, Lin C, et al. Response assessment after an inductive CHOP or CHOP-like regimen with or without rituximab in 103 patients with diffuse large B-cell lymphoma: integrating 18fluorodeoxyglucose positron emission tomography to the International Workshop Criteria. Ann Oncol. 2009;20(3):503–7.

    Article  CAS  PubMed  Google Scholar 

  236. Moskowitz CH, Schoder H, Teruya-Feldstein J, Sima C, Iasonos A, Portlock CS, et al. Risk-adapted dose-dense immunochemotherapy determined by interim FDG-PET in advanced-stage diffuse large B-cell lymphoma. J Clin Oncol. 2010;28(11):1896–903. Pubmed Central PMCID: 3651601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Pregno P, Chiappella A, Bello M, Botto B, Ferrero S, Franceschetti S, et al. Interim 18-FDG-PET/CT failed to predict the outcome in diffuse large B-cell lymphoma patients treated at the diagnosis with rituximab-CHOP. Blood. 2012;119(9):2066–73.

    Article  CAS  PubMed  Google Scholar 

  238. Swinnen LJ, Li H, Quon A, Gascoyne R, Hong F, Ranheim EA, et al. Response-adapted therapy for aggressive non-Hodgkin’s lymphomas based on early [18F] FDG-PET scanning: ECOG-ACRIN Cancer Research Group study (E3404). Br J Haematol. 2015;170(1):56–65. Pubmed Central PMCID: 4696544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Positron emission tomography guided therapy of aggressive Non-Hodgkin’s Lymphomas (PETAL) ClinicalTrials.gov [1.31.2016]. Available from: https://www.clinicaltrials.gov/ct2/show/results/NCT00554164

  240. Duhrsen U, Huttmann A, Jockel KH, Muller S. Positron emission tomography guided therapy of aggressive non-Hodgkin lymphomas – the PETAL trial. Leuk Lymphoma. 2009;50(11):1757–60.

    Article  PubMed  Google Scholar 

  241. Radford J, Illidge T, Counsell N, Hancock B, Pettengell R, Johnson P, et al. Results of a trial of PET-directed therapy for early-stage Hodgkin’s lymphoma. N Engl J Med. 2015;372(17):1598–607.

    Article  CAS  PubMed  Google Scholar 

  242. Dann EJ, Bar-Shalom R, Tamir A, Haim N, Ben-Shachar M, Avivi I, et al. Risk-adapted BEACOPP regimen can reduce the cumulative dose of chemotherapy for standard and high-risk Hodgkin lymphoma with no impairment of outcome. Blood. 2007;109(3):905–9.

    Article  CAS  PubMed  Google Scholar 

  243. Positron Emission Tomography (PET)-adapted chemotherapy in advanced Hodgkin Lymphoma (HL) (HD0607) ClinicalTrials.gov [01.31.2016]. Available from: https://www.clinicaltrials.gov/ct2/show/NCT00795613

  244. High-dose chemotherapy and stem cell transplantation. In patients PET-2 positive, after 2 courses of ABVD and comparison of RT Versus no RT in PET-2 negative patients (HD0801) ClinicalTrials.gov [01.31.2016]. Available from: https://www.clinicaltrials.gov/ct2/show/NCT00784537

  245. HD18 for advanced stages in Hodgkins Lymphoma ClinicalTrials.gov [01.31.2016]. Available from: https://www.clinicaltrials.gov/ct2/show/NCT00515554

  246. Barrington SF, Kirkwood AA, Franceschetto A, Fulham MJ, Roberts TH, Almquist H, et al. PET-CT for staging & early response: results from ‘Response Adapted Therapy in Advanced Hodgkin Lymphoma’ (RATHL) (CRUK/07/033). Blood. 2016;127(12):1531–8

    Google Scholar 

  247. Gallamini A, Rossi A, Patti C, Picardi M, Di Raimondo F, Cantonetti M, et al. Early treatment intensification in advanced-stage high-risk Hodgkin lymphoma (HL) patients, with a positive FDG-PET scan after two ABVD courses–first interim analysis of the GITIL/FIL HD0607 clinical trial. Blood. 2012;120:21.

    Article  CAS  Google Scholar 

  248. Horning SJ, Juweid ME, Schoder H, Wiseman G, McMillan A, Swinnen LJ, et al. Interim positron emission tomography scans in diffuse large B-cell lymphoma: an independent expert nuclear medicine evaluation of the Eastern Cooperative Oncology Group E3404 study. Blood. 2010;115(4):775–7. Pubmed Central PMCID: 2815514, quiz 918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Barrington SF, Qian W, Somer EJ, Franceschetto A, Bagni B, Brun E, et al. Concordance between four European centres of PET reporting criteria designed for use in multicentre trials in Hodgkin lymphoma. Eur J Nucl Med Mol Imaging. 2010;37(10):1824–33.

    Article  PubMed  Google Scholar 

  250. Mikhaeel NG, Timothy AR, O’Doherty MJ, Hain S, Maisey MN. 18-FDG-PET as a prognostic indicator in the treatment of aggressive Non-Hodgkin’s Lymphoma-comparison with CT. Leuk Lymphoma. 2000;39(5–6):543–53.

    Article  CAS  PubMed  Google Scholar 

  251. Lin C, Itti E, Haioun C, Petegnief Y, Luciani A, Dupuis J, et al. Early 18F-FDG PET for prediction of prognosis in patients with diffuse large B-cell lymphoma: SUV-based assessment versus visual analysis. J Nucl Med. 2007;48(10):1626–32.

    Article  PubMed  Google Scholar 

  252. Itti E, Lin C, Dupuis J, Paone G, Capacchione D, Rahmouni A, et al. Prognostic value of interim 18F-FDG PET in patients with diffuse large B-Cell lymphoma: SUV-based assessment at 4 cycles of chemotherapy. J Nucl Med. 2009;50(4):527–33.

    Article  PubMed  Google Scholar 

  253. Gallamini A, Barrington SF, Biggi A, Chauvie S, Kostakoglu L, Gregianin M, et al. The predictive role of interim positron emission tomography for Hodgkin lymphoma treatment outcome is confirmed using the interpretation criteria of the Deauville five-point scale. Haematologica. 2014;99(6):1107–13. Pubmed Central PMCID: 4040916.

    Article  PubMed  PubMed Central  Google Scholar 

  254. Liedtke M, Hamlin PA, Moskowitz CH, Zelenetz AD. Surveillance imaging during remission identifies a group of patients with more favorable aggressive NHL at time of relapse: a retrospective analysis of a uniformly-treated patient population. Ann Oncol. 2006;17(6):909–13.

    Article  CAS  PubMed  Google Scholar 

  255. Oh YK, Ha CS, Samuels BI, Cabanillas F, Hess MA, Cox JD. Stages I–III follicular lymphoma: role of CT of the abdomen and pelvis in follow-up studies. Radiology. 1999;210(2):483–6.

    Article  CAS  PubMed  Google Scholar 

  256. Radford JA, Eardley A, Woodman C, Crowther D. Follow up policy after treatment for Hodgkin’s disease: too many clinic visits and routine tests? A review of hospital records. BMJ. 1997;314(7077):343–6. Pubmed Central PMCID: 2125852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Jerusalem G, Beguin Y, Fassotte MF, Belhocine T, Hustinx R, Rigo P, et al. Early detection of relapse by whole-body positron emission tomography in the follow-up of patients with Hodgkin’s disease. Ann Oncol. 2003;14(1):123–30.

    Article  CAS  PubMed  Google Scholar 

  258. Rhodes MM, Delbeke D, Whitlock JA, Martin W, Kuttesch JF, Frangoul HA, et al. Utility of FDG-PET/CT in follow-up of children treated for Hodgkin and non-Hodgkin lymphoma. J Pediatr Hematol Oncol. 2006;28(5):300–6.

    Article  PubMed  Google Scholar 

  259. Levine JM, Weiner M, Kelly KM. Routine use of PET scans after completion of therapy in pediatric Hodgkin disease results in a high false positive rate. J Pediatr Hematol Oncol. 2006;28(11):711–4.

    Article  PubMed  Google Scholar 

  260. Zinzani PL, Stefoni V, Tani M, Fanti S, Musuraca G, Castellucci P, et al. Role of [18F]fluorodeoxyglucose positron emission tomography scan in the follow-up of lymphoma. J Clin Oncol. 2009;27(11):1781–7.

    Article  PubMed  Google Scholar 

  261. Petrausch U, Samaras P, Haile SR, Veit-Haibach P, Soyka JD, Knuth A, et al. Risk-adapted FDG-PET/CT-based follow-up in patients with diffuse large B-cell lymphoma after first-line therapy. Ann Oncol. 2010;21(8):1694–8.

    Article  CAS  PubMed  Google Scholar 

  262. Petrausch U, Samaras P, Veit-Haibach P, Tschopp A, Soyka JD, Knuth A, et al. Hodgkin’s lymphoma in remission after first-line therapy: which patients need FDG-PET/CT for follow-up? Ann Oncol. 2010;21(5):1053–7.

    Article  CAS  PubMed  Google Scholar 

  263. Leskinen-Kallio S, Minn H, Joensuu H. PET and [11C]methionine in assessment of response in non-Hodgkin lymphoma. Lancet. 1990;336(8724):1188.

    Article  CAS  PubMed  Google Scholar 

  264. Leskinen-Kallio S, Ruotsalainen U, Nagren K, Teras M, Joensuu H. Uptake of carbon-11-methionine and fluorodeoxyglucose in non-Hodgkin’s lymphoma: a PET study. J Nucl Med. 1991;32(6):1211–8.

    CAS  PubMed  Google Scholar 

  265. Nuutinen J, Leskinen S, Lindholm P, Soderstrom KO, Nagren K, Huhtala S, et al. Use of carbon-11 methionine positron emission tomography to assess malignancy grade and predict survival in patients with lymphomas. Eur J Nucl Med. 1998;25(7):729–35.

    Article  CAS  PubMed  Google Scholar 

  266. Sutinen E, Jyrkkio S, Varpula M, Lindholm P, Gronroos T, Lehikoinen P, et al. Nodal staging of lymphoma with whole-body PET: comparison of. J Nucl Med. 2000;41(12):1980–8.

    CAS  PubMed  Google Scholar 

  267. Methionine PET/CT studies in patients with cancer ClinicalTrials.gov [01.31.2016]. Available from: https://www.clinicaltrials.gov/ct2/show/NCT00840047

  268. Buchmann I, Neumaier B, Schreckenberger M, Reske S. [18F]3′-deoxy-3′-fluorothymidine-PET in NHL patients: whole-body biodistribution and imaging of lymphoma manifestations – a pilot study. Cancer Biother Radiopharm. 2004;19(4):436–42.

    CAS  PubMed  Google Scholar 

  269. Buck AK, Bommer M, Stilgenbauer S, Juweid M, Glatting G, Schirrmeister H, et al. Molecular imaging of proliferation in malignant lymphoma. Cancer Res. 2006;66(22):11055–61.

    Article  CAS  PubMed  Google Scholar 

  270. Wagner M, Seitz U, Buck A, Neumaier B, Schultheiss S, Bangerter M, et al. 3′-[18F]fluoro-3′-deoxythymidine ([18F]-FLT) as positron emission tomography tracer for imaging proliferation in a murine B-Cell lymphoma model and in the human disease. Cancer Res. 2003;63(10):2681–7.

    CAS  PubMed  Google Scholar 

  271. Kasper B, Egerer G, Gronkowski M, Haufe S, Lehnert T, Eisenhut M, et al. Functional diagnosis of residual lymphomas after radiochemotherapy with positron emission tomography comparing FDG- and FLT-PET. Leuk Lymphoma. 2007;48(4):746–53.

    Article  PubMed  Google Scholar 

  272. Brepoels L, Stroobants S, Verhoef G, De Groot T, Mortelmans L, De Wolf-Peeters C. (18)F-FDG and (18)F-FLT uptake early after cyclophosphamide and mTOR inhibition in an experimental lymphoma model. J Nucl Med. 2009;50(7):1102–9.

    Article  CAS  PubMed  Google Scholar 

  273. Buck AK, Kratochwil C, Glatting G, Juweid M, Bommer M, Tepsic D, et al. Early assessment of therapy response in malignant lymphoma with the thymidine analogue [18F]FLT. Eur J Nucl Med Mol Imaging. 2007;34(11):1775–82.

    Article  CAS  PubMed  Google Scholar 

  274. Graf N, Herrmann K, den Hollander J, Fend F, Schuster T, Wester HJ, et al. Imaging proliferation to monitor early response of lymphoma to cytotoxic treatment. Mol Imaging Biol. 2008;10(6):349–55.

    Article  PubMed  Google Scholar 

  275. Herrmann K, Wieder HA, Buck AK, Schoffel M, Krause BJ, Fend F, et al. Early response assessment using 3′-deoxy-3′-[18F]fluorothymidine-positron emission tomography in high-grade non-Hodgkin’s lymphoma. Clin Cancer Res. 2007;13(12):3552–8.

    Article  CAS  PubMed  Google Scholar 

  276. Lawrence J, Vanderhoek M, Barbee D, Jeraj R, Tumas DB, Vail DM. Use of 3′-deoxy-3′-[18F]fluorothymidine PET/CT for evaluating response to cytotoxic chemotherapy in dogs with non-Hodgkin’s lymphoma. Vet Radiol Ultrasound. 2009; 50(6):660–8.

    Article  PubMed  Google Scholar 

  277. 3′-Deoxy-3′-[18F] fluorothymidine PET imaging in patients with cancer ClinicalTrials.gov [01.31.2016]. Available from: https://www.clinicaltrials.gov/ct2/show/NCT00935090.

  278. A study to demonstrate the safety and preliminary efficacy of 18F-FLT in patients with solid tumours or lymphoma ClinicalTrials.gov [01.31.2016]. Available from: https://www.clinicaltrials.gov/ct2/show/NCT01065805.

  279. Therapy for patients with untreated age-adjusted international prognostic index low-intermediate risk, high-intermediate risk, or high risk diffuse large B cell lymphoma ClinicalTrials.gov [01.31.2016]. Available from: https://www.clinicaltrials.gov/ct2/show/NCT00712582.

  280. Schoder H, Zelenetz A, Hamlin P, Gavane S, Horwitz S, Matasar M, et al. Prospective study of FLT PET for early interim response assessment in advanced stage B-cell lymphoma. J Nucl Med. 2015;57:728.

    Article  PubMed  PubMed Central  Google Scholar 

  281. Sugawara Y, Braun DK, Kison PV, Russo JE, Zasadny KR, Wahl RL. Rapid detection of human infections with fluorine-18 fluorodeoxyglucose and positron emission tomography: preliminary results. Eur J Nucl Med. 1998;25(9):1238–43.

    Article  CAS  PubMed  Google Scholar 

  282. Yamada S, Kubota K, Kubota R, Ido T, Tamahashi N. High accumulation of fluorine-18-fluorodeoxyglucose in turpentine-induced inflammatory tissue. J Nucl Med. 1995;36(7):1301–6.

    CAS  PubMed  Google Scholar 

  283. Jacene HA, Ishimori T, Engles JM, Leboulleux S, Stearns V, Wahl RL. Effects of pegfilgrastim on normal biodistribution of 18F-FDG: preclinical and clinical studies. J Nucl Med. 2006;47(6):950–6.

    CAS  PubMed  Google Scholar 

  284. Sugawara Y, Fisher SJ, Zasadny KR, Kison PV, Baker LH, Wahl RL. Preclinical and clinical studies of bone marrow uptake of fluorine-1-fluorodeoxyglucose with or without granulocyte colony-stimulating factor during chemotherapy. J Clin Oncol. 1998; 16(1):173–80.

    Article  CAS  PubMed  Google Scholar 

  285. Blodgett TM, Ames JT, Torok FS, McCook BM, Meltzer CC. Diffuse bone marrow uptake on whole-body F-18 fluorodeoxyglucose positron emission tomography in a patient taking recombinant erythropoietin. Clin Nucl Med. 2004;29(3):161–3.

    Article  PubMed  Google Scholar 

  286. Brink I, Reinhardt MJ, Hoegerle S, Altehoefer C, Moser E, Nitzsche EU. Increased metabolic activity in the thymus gland studied with 18F-FDG PET: age dependency and frequency after chemotherapy. J Nucl Med. 2001;42(4):591–5.

    CAS  PubMed  Google Scholar 

  287. Cohade C, Osman M, Pannu HK, Wahl RL. Uptake in supraclavicular area fat (“USA-Fat”): description on 18F-FDG PET/CT. J Nucl Med. 2003;44(2):170–6.

    CAS  PubMed  Google Scholar 

  288. Jacene HA. FDG PET, and PET/CT in lymphoma. In: Wahl RL, editor. Categorical course in diagnostic radiology: clinical PET and PET/CT imaging. Oak Brook: Radiological Society of North America; 2007.

    Google Scholar 

Suggested Reading

  • Barrington SF, Mikhaeel NG, Kostakoglu L, Meignan M, Hutchings M, Mueller SP, et al. Role of imaging in the staging and response assessment of lymphoma: consensus of the International Conference on Malignant Lymphomas Imaging Working Group. J Clin Oncol. 2014;32(27):3048–58.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059–68.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gisselbrecht C, et al. Radioimmunotherapy for stem cell transplantation in non-Hodgkin’s lymphoma: in pursuit of a complete response. Oncologist. 2009;14 suppl 2:41–51.

    Article  CAS  PubMed  Google Scholar 

  • Goldsmith SJ. Radioimmunotherapy of Lymphoma: Bexxar and Zevalin. Semin Nucl Med. 2010;40:122–35.

    Article  PubMed  Google Scholar 

  • Hutchings M, Barrington SF. PET/CT for therapy response assessment in lymphoma. J Nucl Med. 2009;50:21S–30S.

    Article  CAS  PubMed  Google Scholar 

  • Sharkey RM, Karacay H, Goldenberg DM. Improving treatment of non-Hodgkin’s lymphoma with antibody-targeted radionuclides. Cancer. 2010;116(4 suppl):1134–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heather A. Jacene or Sree Harsha Tirumani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Jacene, H.A., Tirumani, S.H., Wahl, R.L. (2016). Diagnostic Applications of Nuclear Medicine: Lymphomas. In: Strauss, H., Mariani, G., Volterrani, D., Larson, S. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-26067-9_7-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26067-9_7-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-26067-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Diagnostic Applications of Nuclear Medicine: Lymphomas
    Published:
    25 May 2022

    DOI: https://doi.org/10.1007/978-3-319-26067-9_7-2

  2. Original

    Diagnostic Applications of Nuclear Medicine: Lymphomas
    Published:
    03 October 2016

    DOI: https://doi.org/10.1007/978-3-319-26067-9_7-1