Skip to main content

Halide Minerals

  • Living reference work entry
  • First Online:
Encyclopedia of Geochemistry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 854 Accesses

Definition

Halide minerals are a group of naturally occurring inorganic compounds that are salts of the halogen acids and encompass minerals with a dominant halide anion (F−, Cl−, Br−, and I−). Complex halide minerals can also have polyatomic anions addition to, or that include, halides. With the notable exceptions of halite (rock salt), sylvite , carnallite, which are the result of the solar evaporation of a brine, and fluorite a widespread hydrothermal precipitate , halide minerals are typically rare and of very local occurrence. Most are fumarolic sublimates or alteration/weathering products tied to exposure to, or brine interaction with, various metalliferous ore deposits (Table 1).

Table 1 Natural halide minerals

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adhikesavalu, D., Cameron, T. S., and Knop, O., 1985. Thomsenolite, NaCaAlF6.H2O: hydrogen bonding and comparison with pachnolite. Canadian Journal of Chemistry, 63, 3322–3327.

    Article  Google Scholar 

  • Adib, D., and Ottemann, J., 1972. Ein neues mineral, (Cu,Zn)2(OH)3Cl, aus der Kali-Kafi mine, Provinz Anarak, zentral Iran. Neues Jahrbuch für Mineralogie Monatshefte, 9, 335–338.

    Google Scholar 

  • Aljubouri, Z. A., and Alddabbagh, S. M., 1980. Sinjarite, a new mineral from Iraq. Mineralogical Magazine, 43, 643–645.

    Article  Google Scholar 

  • Barclay, C. J., and Jones, J. B., 1971. The Broken Hill silver halides. Journal Geological Society of Australia, 18, 149–157.

    Article  Google Scholar 

  • Beattie, J. K., and Moore, C. J., 1982. Crystal and molecular structures of rinneite, sodium tripotassium hexachloroferrate(II), and hexaamminecobalt(llI) hexachloroferrate(III). Comparison of iron-chloride distances in hexachloroferrates(lI) and -(III). Inorganic Chemistry, 21, 1292–1295.

    Article  Google Scholar 

  • Braithwaite, R. S. W., Mereiter, K., Paar, W. H., and Clark, A. M., 2004. Herbertsmithite, Cu3Zn(OH)6Cl2, a new species, and the definition of paratacamite. Mineralogical Magazine, 68, 527–539.

    Article  Google Scholar 

  • Brunton, G., 1968. Refinement of the structure of NaBF4. Acta Crystallographica, 24, 1703–1704.

    Article  Google Scholar 

  • Buchwald, V. F., and Clarke, R. S., Jr., 1989. Corrosion of Fe-Ni alloy by Cl-containing akaganéite (β-FeOOH): the Antarctic meteorite case. American Mineralogist, 74, 663–664.

    Google Scholar 

  • Cameron, E., Leybourne, M., and Palacios, C., 2007. Atacamite in the oxide zone of copper deposits in northern Chile: involvement of deep formation waters? Mineralium Deposita, 42, 205–218.

    Article  Google Scholar 

  • Chistyakova, M. B., and Kazakova, M. E., 1969. Fluocerite from Kazakhstan. Trudy Mineralog Muzeya Akademii Nauk SSSR, 19, 236–238.

    Google Scholar 

  • Clark, J. R., Evans, H. T., Jr., and Erd, R. C., 1980. Tachyhydrite, dimagnesium calcium chloride 12-hydrate. Acta Crystallographica, 36, 2736–2739.

    Article  Google Scholar 

  • Dill, H. G., 2015. Pegmatites and aplites. Their genetic and applied ore geology. Ore Geology Reviews, 69, 417–561.

    Article  Google Scholar 

  • Eglinger, A., Ferraina, C., Tarantola, A., André-Mayer, A.-S., Vanderhaeghe, O., Boiron, M.-C., Dubessy, J., Richard, A., and Brouand, M., 2014. Hypersaline fluids generated by high-grade metamorphism of evaporites: fluid inclusion study of uranium occurrences in the Western Zambian copperbelt. Contributions to Mineralogy and Petrology, 167, 1–28.

    Article  Google Scholar 

  • Finney, J. J., Graeber, E. J., Rosenzweig, A., and Hamilton, R. D., 1977. The structure of chloroxiphite, Pb3CuO2(OH)2Cl2. Mineralogical Magazine, 41, 357–361.

    Article  Google Scholar 

  • Fleet, M. E., 1975. The crystal structure of paratacamite, Cu2(OH)3Cl. Acta Crystallographica, 31, 183–187.

    Article  Google Scholar 

  • Forti, P., 2005. Genetic processes of cave minerals in volcanic environments: an overview. Journal of Cave and Karst Studies, 67(1), 3–13. v. 67, p. 3–13.

    Google Scholar 

  • Frondel, C., 1950. On paratacamite and some related copper chlorides. Mineralogical Magazine, 29, 34–45.

    Article  Google Scholar 

  • Gaines, R. V., Skinner, H. C. W., Foord, E. E., Mason, B., and Rosenzweig, A., 1997. Dana’s New Mineralogy: The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, 8th edn. New York: Wiley, p. 1819.

    Google Scholar 

  • Garrett, D. E., 1985. Chemistry and origin of the Chilean nitrate deposits. Sixth International Symposium on Salt, 1, 285–302.

    Google Scholar 

  • Geller, S., 1971. Refinement of the crystal structure of cryolithionite, {Na3}[Al2](Li3)F12. American Mineralogy, 56, 18–23.

    Google Scholar 

  • Gillard, R. D., Hart, A. D., Humphreys, D. A., Symes, R. F., and Williams, P. A., 1997. Compositions of silver halides from the Broken Hill district, New South Wales. Records of the Australian Museum, 49, 217–228.

    Article  Google Scholar 

  • Gislason, S. R., Hassenkam, T., Nedel, S., Bovet, N., Eiriksdottir, E. S., Alfredsson, H. A., Hem, C. P., Balogh, Z. I., Dideriksen, K., Oskarsson, N., Sigfusson, B., Larsen, G., and Stipp, S. L. S., 2011. Characterization of Eyjafjallajökull volcanic ash particles and a protocol for rapid risk assessment. Proceedings of the National Academy of Sciences, 108, 7307–7312.

    Article  Google Scholar 

  • Hawthorne, F. C., 1985. Refinement of the crystal structure of botallackite. Mineralogical Magazine, 49, 87–89.

    Article  Google Scholar 

  • Hawthorne, F. C., and Ferguson, R. B., 1983. The crystal structure of pachnolite. Canadian Mineralogist, 21, 561–566.

    Google Scholar 

  • Hawthorne, and Groat, L. A., 1986. The crystal structure and chemical composition of cumengeite. Mineralogical Magazine, 50, 157–162.

    Article  Google Scholar 

  • Jacobini C, Leble A, Rosseau JJ (1981) Détermination précise de la structure de la chiolite Na5Al3F14 etétude par R.P.E. de Na5Al3F14:Cr3+. J Solid State Chem 36:297–304

    Article  Google Scholar 

  • Jones, J. E., 1982. The Laurion silver mines: a review of recent researches and results. Greece & Rome, 29, 169–183.

    Article  Google Scholar 

  • Kendrick, M., and Burnard, P., 2013. Noble gases and halogens in fluid inclusions: a journey through the earth's crust. In Burnard, P. (ed.), The Noble Gases as Geochemical Tracers: Advances in Isotope Geochemistry. Berlin/Heidelberg: Springer, pp. 319–369.

    Chapter  Google Scholar 

  • Klein, C., and Dutrow, B., 2008. The 23rd Edition of the Manual of Mineral Science. Hoboken: Wiley, p. 675.

    Google Scholar 

  • Kohlberger, W., 1976. Minerals of the Laurium mines, Attica, Greece. Mineralogical Record, 7, 114–125.

    Google Scholar 

  • Korbel, P., and Novik, M., 2001. The Complete Encyclopedia of Minerals. London: Books Grange, p. 296.

    Google Scholar 

  • Koritnig, S., 1951. Ein beitrag zur geochemie des fluor: (Mit besonderer Berücksichtigung der Sedimente). Geochimica et Cosmochimica Acta, 1, 89–116.

    Article  Google Scholar 

  • Lottermoser, B. G., and Lu, J., 1997. Petrogenesis of rare-element pegmatites in the Olary Block, South Australia, part 1. Mineralogy and chemical evolution. Mineralogy and Petrology, 59, 1–19.

    Article  Google Scholar 

  • Mangler, M. F., Marks, M. A. W., Zaitzev, A. N., Eby, G. N., and Markl, G., 2014. Halogens (F, Cl and Br) at Oldoinyo Lengai volcano (Tanzania). Effects of magmatic differentiation, silicate–natrocarbonatite melt separation and surface alteration of natrocarbonatite. Chemical Geology, 365, 43–53.

    Article  Google Scholar 

  • Merlino, S., Pasero, M., and Perchiazzi, N., 1993. Crystal structure of paralaurionite and its OD relationship with laurionite. Mineralogical Magazine, 57, 323–328.

    Article  Google Scholar 

  • Merlino, S., Pasero, M., and Perchiazzi, N., 1994. Fiedlerite: revised chemical formula [Pb3Cl4F(OH).H2O], OD description and crystal structure refinement of the two MDO polytypes. Mineralogical Magazine, 58, 69–78.

    Article  Google Scholar 

  • Merlino, S., Pasero, M., Perchiazzi, N., and Gianfagna, A., 1995. X-ray and electron diffraction study of penfieldite: average structure and multiple cells. Mineralogical Magazine, 59, 341–347.

    Article  Google Scholar 

  • Mountain, E. D., 1937. Two new bismuth minerals from South Africa. Mineralogical Magazine, 24, 59–64.

    Article  Google Scholar 

  • Pasero, M., and Perchiazzi, N., 1996. Crystal structure refinement of matlockite. Mineralogical Magazine, 60, 833–836.

    Article  Google Scholar 

  • Pauly, H., 1965. Ralstonite from Ivigtut, South Greenland. American Mineralogist, 50, 1851–1864.

    Google Scholar 

  • Pauly, H., Hawthorne, F. C., Burns, P. C., and Ventura, G. D., 1997. Jørgensenite, Na2 (Sr, Ba)14Na2A12F64(OH, F)4, a new aluminofluoride mineral from Ivigtut, Greenland. Canadian Mineralogist, 35, 175–179.

    Google Scholar 

  • Petersen, O. V., 1986. On the prosopite, CaAl2F24(OH)4, from Ivigtut. Neues Jahrbücher Mineralogie, Monatsh, 148, 329–335.

    Google Scholar 

  • Raade, G., and Haug, P., 1981. Morphology and twinning of sellaite from Gjerdingen, Norway. Mineralogical Record, 12, 231–232.

    Google Scholar 

  • Radkte, A. S., and Brown, G. E., 1974. Frankdicksonite, BaF2, a new mineral from Nevada. American Mineralogist, 59, 885–888.

    Google Scholar 

  • Richardson, C. K., and Holland, H. D., 1979. Fluorite deposition in hydrothermal systems. Geochimica et Cosmochimica Acta, 43, 1327–1335.

    Article  Google Scholar 

  • Saini-Eidukat, B., Rudashevsky, N. S., and Polozov, A. G., 1998. Evidence for hibbingite-kempite solid solution. Mineralogical Magazine, 62, 251–255.

    Article  Google Scholar 

  • Schlüter J, Pohl D, Britvin S (2005) The new mineral challacolloite, KPb2Cl5, the natural occurrence of a technically known laser material. N Jb Min Abh 182:95–101

    Article  Google Scholar 

  • Siidra, O. I., Krivovichev, S. V., Turner, R. W., and Rumsey, M. S., 2008. Chloroxiphite Pb3CuO2(OH)2Cl2: structure refinement and description in terms of oxocentred OPb4 tetrahedra. Mineralogical Magazine, 72, 793–798.

    Article  Google Scholar 

  • Skarpelis, N., and Argyraki, A., 2009. Geology and origin of supergene ore at the Lavrion Pb-Ag-Zn deposit, Attica, Greece. Resource Geology, 59, 1–14.

    Article  Google Scholar 

  • Starinsky, A., and Katz, A., 2003. The formation of natural cryogenic brines. Geochimica et Cosmochimica Acta, 67, 1475–1484.

    Article  Google Scholar 

  • Stewart, F. P., 1963. Data of geochemistry, chapter Y, marine evaporites. US Geologial Survey Professional Paper, 440-Y, Y1–Y53.

    Google Scholar 

  • Stormer, J. C., Jr., and Carmichael, I. S. E., 1970. Villiaumite and the occurrence of fluoride minerals in igneous rocks. American Mineralogist, 55, 126–134.

    Google Scholar 

  • Symes, R. F., and Embrey, P. G., 1977. Mendipite and other rare oxychloride minerals from the Mendip Hills, Somerset, England. Mineralogical Record, 8, 298–303.

    Google Scholar 

  • Talbot, C. J., Farhadi, R., and Aftabi, P., 2009. Potash in salt extruded at Sar Pohl diapir, Southern Iran. Ore Geology Reviews, 35, 352–366.

    Article  Google Scholar 

  • Torii, T., and Ossaka, J., 1965. A new mineral, calcium chloride hexahydrate, discovered in Antarctica. Science, 149, 975–977.

    Article  Google Scholar 

  • Warren, J. K., 2016. Evaporites: a compendium. Berlin: Springer, p. 1854. ISBN 978-3-319-13511-3.

    Google Scholar 

  • Winchell, R. E., and Rouse, R. C., 1973. The crystal structure of boleite – a mineral containing silver atom clusters. Journal of Solid State Chemistry, 6, 86–92.

    Google Scholar 

  • Winchell, R. E., and Rouse, R. C., 1974. The mineralogy of the boleite group. Mineralogical Record, 5, 280–287.

    Google Scholar 

  • Winchell, R. E., and Wenden, H. E., 1968. Synthesis and study of diaboleite. Mineralogical Magazine, 36, 933–939.

    Article  Google Scholar 

  • Witzke, T., 1997. New data on the mercury iodide mineral coccinite, HgI2. Neues Jahrbuch für Mineralogie, Abhandlungen, 172, 505–510.

    Google Scholar 

  • Zalkin, A., Forrester, J. D., and Templeton, D. H., 1964. The crystal structure of sodium fluosilicate. Acta Crystallographica, 17.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Warren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Warren, J. (2016). Halide Minerals. In: White, W. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39193-9_108-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39193-9_108-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-39193-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics