Skip to main content

Quantum Machine Learning in Chemistry and Materials

  • Living reference work entry
  • First Online:
Handbook of Materials Modeling

Abstract

Within the past few years, we have witnessed the rising of quantum machine learning (QML) models which infer electronic properties of molecules and materials, rather than solving approximations to the electronic Schrödinger equation. The increasing availability of large quantum mechanics reference datasets has enabled these developments. We review the basic theories and key ingredients of popular QML models such as choice of regressor, data of varying trustworthiness, the role of the representation, and the effect of training set selection. Throughout we emphasize the indispensable role of learning curves when it comes to the comparative assessment of different QML models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Axilrod BM, Teller E (1943) Interaction of the van der Waals type between three atoms. J Chem Phys 11(6):299–300. https://doi.org/10.1063/1.1723844, http://scitation.aip.org/content/aip/journal/jcp/11/6/10.1063/1.1723844

  • Bader RF (1990) Atoms in molecules: a quantum theory. Clarendon Press, Oxford

    Google Scholar 

  • Bartók AP, Payne MC, Kondor R, Csányi G (2010) Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys Rev Lett 104:136403. https://doi.org/10.1103/PhysRevLett.104.136403

  • Bartók AP, Kondor R, Csányi G (2013) On representing chemical environments. Phys Rev B 87:184115. https://doi.org/10.1103/PhysRevB.87.184115

  • Bartók AP, De S, Poelking C, Bernstein N, Kermode JR, Csányi G, Ceriotti M (2017) Machine learning unifies the modeling of materials and molecules. Sci Adv 3(12). https://doi.org/10.1126/sciadv.1701816, http://advances.sciencemag.org/content/3/12/e1701816

  • Browning NJ, Ramakrishnan R, von Lilienfeld OA, Roethlisberger U (2017) Genetic optimization of training sets for improved machine learning models of molecular properties. J Phys Chem Lett 8(7):1351. https://doi.org/10.1021/acs.jpclett.7b00038

  • Csányi G, Albaret T, Payne MC, Vita AD (2004) “Learn on the fly”: a hybrid classical and quantum-mechanical molecular dynamics simulation. Phys Rev Lett 93:175503

    Google Scholar 

  • De S, Bartok AP, Csanyi G, Ceriotti M (2016) Comparing molecules and solids across structural and alchemical space. Phys Chem Chem Phys 18:13754–13769. https://doi.org/10.1039/C6CP00415F

  • Faber FA, Christensen AS, Huang B, von Lilienfeld OA (2017a) Alchemical and structural distribution based representation for improved QML. arXiv preprint arXiv:171208417

    Google Scholar 

  • Faber FA, Hutchison L, Huang B, Gilmer J, Schoenholz SS, Dahl GE, Vinyals O, Kearnes S, Riley PF, von Lilienfeld OA (2017b) Fast machine learning models of electronic and energetic properties consistently reach approximation errors better than dft accuracy. https://arxiv.org/abs/1702.05532

  • Fasshauer G, McCourt M (2016) Kernel-based approximation methods using Matlab. World Scientific, New Jersey

    Google Scholar 

  • Fias S, Heidar-Zadeh F, Geerlings P, Ayers PW (2017) Chemical transferability of functional groups follows from the nearsightedness of electronic matter. Proc Natl Acad Sci 114(44):11633–11638

    Google Scholar 

  • Ghiringhelli LM, Vybiral J, Levchenko SV, Draxl C, Scheffler M (2015) Big data of materials science: critical role of the descriptor. Phys Rev Lett 114:105503. https://doi.org/10.1103/PhysRevLett.114.105503

  • Greeley J, Jaramillo TF, Bonde J, Chorkendorff I, Nørskov JK (2006) Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater 5(11): 909–913

    Google Scholar 

  • Hansen K, Biegler F, von Lilienfeld OA, Müller KR, Tkatchenko A (2015) Interaction potentials in molecules and non-local information in chemical space. J Phys Chem Lett 6:2326. https://doi.org/10.1021/acs.jpclett.5b00831

  • Huang B, von Lilienfeld OA (2016) Communication: understanding molecular representations in machine learning: the role of uniqueness and target similarity. J Chem Phys 145(16):161102. https://doi.org/10.1063/1.4964627

  • Huang B, von Lilienfeld OA (2017) Chemical space exploration with molecular genes and machine learning. arXiv preprint arXiv:170704146

    Google Scholar 

  • Kennedy MC, O’Hagan A (2000) Predicting the output from a complex computer code when fast approximations are available. Biometrika 87(1):1–13

    Google Scholar 

  • Kirkpatrick P, Ellis C (2004) Chemical space. Nature 432(7019):823–823. https://doi.org/10.1038/432823a

  • Kitaura K, Ikeo E, Asada T, Nakano T, Uebayasi M (1999) Fragment molecular orbital method: an approximate computational method for large molecules. Chem Phys Lett 313(3–4):701–706. https://doi.org/10.1016/S0009-2614(99)00874-X

  • Muto Y (1943) Force between nonpolar molecules. J Phys-Math Soc Jpn 17:629–631

    Google Scholar 

  • Pilania G, Gubernatis JE, Lookman T (2017) Multi-fidelity machine learning models for accurate bandgap predictions of solids. Comput Mater Sci 129:156–163

    Google Scholar 

  • Podryabinkin EV, Shapeev AV (2017) Active learning of linearly parametrized interatomic potentials. Comput Mater Sci 140:171–180

    Google Scholar 

  • Prodan E, Kohn W (2005) Nearsightedness of electronic matter. Proc Natl Acad Sci USA 102(33):11635–11638. https://doi.org/10.1073/pnas.0505436102

  • Ramakrishnan R, von Lilienfeld OA (2015) Many molecular properties from one kernel in chemical space. Chimia 69(4):182. https://doi.org/10.2533/chimia.2015.182, http://www.ingentaconnect.com/content/scs/chimia/2015/00000069/00000004/art00005

  • Ramakrishnan R, Dral P, Rupp M, von Lilienfeld OA (2014) Quantum chemistry structures and properties of 134 kilo molecules. Sci Data 1:140022. https://doi.org/10.1038/sdata.2014.22

  • Ramakrishnan R, Dral P, Rupp M, von Lilienfeld OA (2015a) Big data meets quantum chemistry approximations: the Δ-machine learning approach. J Chem Theory Comput 11:2087–2096. https://doi.org/10.1021/acs.jctc.5b00099

  • Ramakrishnan R, Hartmann M, Tapavicza E, von Lilienfeld OA (2015b) Electronic spectra from TDDFT and machine learning in chemical space. J Chem Phys 143:084111. http://arxiv.org/abs/1504.01966

  • Rappe AK, Casewit CJ, Colwell KS, Goddard WA III, Skiff WM (1992) Uff, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114(25):10024–10035. https://doi.org/10.1021/ja00051a040

  • Rasmussen C, Williams C (2006) Gaussian processes for machine learning. Adaptative computation and machine learning series. University Press Group Limited. https://books.google.ch/books?id=vWtwQgAACAAJ

  • Ruddigkeit L, van Deursen R, Blum LC, Reymond JL (2012) Enumeration of 166 billion organic small molecules in the chemical universe database gdb-17. J Chem Inf Model 52(11): 2864–2875. https://doi.org/10.1021/ci300415d

  • Rupp M, Tkatchenko A, Müller KR, von Lilienfeld OA (2012) Fast and accurate modeling of molecular atomization energies with machine learning. Phys Rev Lett 108(5):058301. https://doi.org/10.1103/PhysRevLett.108.058301

  • Samuel AL (2000) Some studies in machine learning using the game of checkers. IBM J Res Dev 44(1.2):206–226

    Google Scholar 

  • Todeschini R, Consonni V (2008) Handbook of molecular descriptors, vol 11. Wiley, Weinheim

    Google Scholar 

  • von Lilienfeld OA (2018) Quantum machine learning in chemical compound space. Angew Chemie Int Ed. http://dx.doi.org/10.1002/anie.201709686

  • von Lilienfeld OA, Ramakrishnan R, Rupp M, Knoll A (2015) Fourier series of atomic radial distribution functions: a molecular fingerprint for machine learning models of quantum chemical properties. Int J Quantum Chem 115(16):1084–1093. https://doi.org/10.1002/qua.24912

Download references

Acknowledgements

We acknowledge support by the Swiss National Science foundation (No. PP00P2_138932, 407540_167186 NFP 75 Big Data, 200021_175747, NCCR MARVEL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Anatole von Lilienfeld .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Huang, B., Symonds, N.O., Lilienfeld, O.A.v. (2018). Quantum Machine Learning in Chemistry and Materials. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling . Springer, Cham. https://doi.org/10.1007/978-3-319-42913-7_67-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42913-7_67-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42913-7

  • Online ISBN: 978-3-319-42913-7

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics