Skip to main content

Membrane-Disrupting Proteins

  • Reference work entry
  • First Online:
Biogenesis of Fatty Acids, Lipids and Membranes

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

  • 1591 Accesses

Abstract

The cell membrane is vulnerable to attack from various external toxins and environmental threats. The ability to damage membranes of target cells has evolved across biology as a way to procure food and defend against disease or attack from other species. The membrane disruption is mostly carried out by proteins, and, although they originate from across the full spectrum of biological diversity, they share common mechanisms at the molecular level. This chapter uses specific examples to show how the secondary structure of proteins determines the various modes of action and how, starting from simple physicochemical interactions, specific molecular recognition has arisen to increase the effectiveness of the toxins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 489.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderluh G, Lakey JH (2008) Disparate proteins use similar architectures to damage membranes. Trends Biochem Sci 33(10):482–490

    Article  CAS  Google Scholar 

  • Bakrac B, Gutierrez-Aguirre I, Podlesek Z, Sonnen AFP, Gilbert RJC, Macek P, Lakey JH, Anderluh G (2008) Molecular determinants of sphingomyelin specificity of a eukaryotic pore-forming toxin. J Biol Chem 283(27):18665–18677

    Article  CAS  Google Scholar 

  • Bechinger B (2004) Structure and function of membrane-lytic peptides. Crit Rev Plant Sci 23(3):271–292

    Article  CAS  Google Scholar 

  • Bechinger B, Lohner K (2006) Detergent-like actions of linear amphipathic cationic antimicrobial peptides. Biochim Biophys Acta 1758(9):1529–1539

    Article  CAS  Google Scholar 

  • Ehrlich P (1913) Address in pathology chemotherapeutics: scientific principle, methods and results. Lancet 182(4694):445–451

    Article  Google Scholar 

  • Gilbert RJC, Serra MD, Froelich CJ, Wallace MI, Anderluh G (2014) Membrane pore formation at protein-lipid interfaces. Trends Biochem Sci 39(11):510–516

    Article  CAS  Google Scholar 

  • Hong Q, Gutierrez-Aguirre I, Barlic A, Malovrh P, Kristan K, Podlesek V, Macek P, Gonzalez-Mañas J-M, Lakey JH, Anderluh G (2002) Two-step membrane binding by equinatoxin II, a pore-forming toxin from the sea anemone, involves an exposed aromatic cluster and a flexible helix. J Biol Chem 277(44):41916–41924

    Article  CAS  Google Scholar 

  • Iacovache I, van der Goot FG, Pernot L (2008) Pore formation: an ancient yet complex form of attack. Biochim Biophys Acta 1778(7–8):1611–1623

    Article  CAS  Google Scholar 

  • Johnson CL, Ridley H, Marchetti R, Silipo A, Griffin DC, Crawford L, Bonev B, Molinaro A, Lakey JH (2014) The antibacterial toxin colicin N binds to the inner core of lipopolysaccharide and close to its translocator protein. Mol Microbiol 92(3):440–452

    Article  CAS  Google Scholar 

  • Kolter T, Winau F, Schaible UE, Leippe M, Sandhoff K (2005) Lipid-binding proteins in membrane digestion, antigen presentation, and antimicrobial defense. J Biol Chem 280(50):41125–41128

    Article  CAS  Google Scholar 

  • Lakey JH, Parker MW, Gonzalez Manas JM, Duche D, Vriend G, Baty D, Pattus F (1994a) The role of electrostatic charge in the membrane insertion of colicin A: calculation and mutation. Eur J Biochem 220:155–163

    Article  CAS  Google Scholar 

  • Lakey JH, van der Goot FG, Pattus F (1994b) All in the family: the toxic activity of colicins. Toxicology 87:85–108

    Article  CAS  Google Scholar 

  • Openshaw AEA, Race PR, Monzo HJ, Vazquez-Boland JA, Banfield MJ (2005) Crystal structure of SmcL, a bacterial neutral sphingomyelinase C from Listeria. J Biol Chem 280(41):35011–35017

    Article  CAS  Google Scholar 

  • Raghuraman H, Chattopadhyay A (2007) Melittin: a membrane-active peptide with diverse functions. Biosci Rep 27(4–5):189–223

    Article  CAS  Google Scholar 

  • Weber DK, Yao S, Rojko N, Anderluh G, Lybrand TP, Downton MT, Wagner J, Separovic F (2015) Characterization of the lipid-binding site of equinatoxin II by NMR and molecular dynamics simulation. Biophys J 108(8):1987–1996

    Article  CAS  Google Scholar 

  • Wimley WC, White SH (1996) Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat Struct Biol 3(10):842–848

    Article  CAS  Google Scholar 

  • Yau WM, Wimley WC, Gawrisch K, White SH (1998) The preference of tryptophan for membrane interfaces. Biochemistry 37(42):14713–14718

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy H. Lakey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lakey, J.H., Anderluh, G. (2019). Membrane-Disrupting Proteins. In: Geiger, O. (eds) Biogenesis of Fatty Acids, Lipids and Membranes. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-50430-8_53

Download citation

Publish with us

Policies and ethics