Skip to main content

Fish as a Model for Research in Space

  • Living reference work entry
  • First Online:
Handbook of Space Pharmaceuticals
  • 241 Accesses

Abstract

A new facility for rearing small fish was established in the International Space Station (ISS) in 2012 and the experiments employing medaka fish and zebrafish were performed for studies of revealing the mechanism of bone loss and muscle atrophy under microgravity. Firstly, we introduce all experiments withsmall fish performed in the ISS, and then mainly report recent experiments for medaka fish. Space flight with low gravity shows decrease in bone mineral density. To identify the mechanism of this low density, unique experiments on medaka fish were performed twice at the ISS. One was a long-term experiment for the analysis of bone growth, which revealed a decrease in the mineral density. Another was a short-term experiment for live imaging of medaka transgenic lines followed by transcriptome analyses, which revealed increased expressions of five genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abduweli D, Baba O, Tabata MJ et al (2014) Tooth replacement and putative odontogenic stem cell niches in pharyngeal dentition of medaka (Oryzias latipes). Microscopy (Oxf) 63:141–153

    Article  Google Scholar 

  • Aceto J, Nourizadeh-Lillabadi R, Maree R, Dardenne N, Jeanray N, Wehenkel L, Alestrom P, van Loon JJWA, Muller M (2015) Zebrafish bone and general physiology are differently affected by hormones or changes in gravity. PLoS One. https://doi.org/10.1371/journal.pone.0126928

  • Azetsu Y, Inohaya K, Takano Y, Kinoshita M, Tasaki M, Kudo A (2017) The sp7 gene is required for maturation of osteoblast-lineage cells in medaka (Oryzias latipes) vertebral column development. Dev Biol 431:252–262

    Article  CAS  Google Scholar 

  • Berezovska OP, Rodionova NV, Grigoryan EN et al (1998) Changes in the numbers of osteoclasts in newts under conditions of microgravity. Adv Space Res 21:1059–1063

    Article  CAS  Google Scholar 

  • Chatani M, Takano Y, Kudo A (2011) Osteoclasts in bone modeling, as revealed by in vivo imaging, are essential for organogenesis in fish. Dev Biol 360:96–109

    Article  CAS  Google Scholar 

  • Chatani M, Mantoku A, Takeyama K et al (2015) Microgravity promotes osteoclast activity in medaka fish reared at the international space station. Sci Rep 5:14172

    Article  CAS  Google Scholar 

  • Chatani M, Morimoto H, Takeyama K et al (2016) Acute transcriptional up-regulation specific to osteoblasts/osteoclats in medaka fish immediately after exposure to microgravity. Sci Rep 6:39545

    Article  CAS  Google Scholar 

  • David H (1963) Russians discuss space radiation in conference. In: Coughlin WJ (ed) Missiles and rockets, vol 13. Bougton, Washington, D.C., p 34

    Google Scholar 

  • Edsall SC, Franz-Odendaal TA (2014) An assessment of the long-term effects of simulated microgravity on cranial neural crest cells in zebrafish embryos with a focus on the adult skeleton. PLoS One 9:e89296

    Article  Google Scholar 

  • Ekanayake S, Hall BK (1988) Ultrastructure of the osteogenesis of acellular vertebral bone in the Japanese medaka, Oryzias latipes (Teleostei, Cyprinidontidae). Am J Anat 182:241–249

    Article  CAS  Google Scholar 

  • Ghosh P, Stabley JN, Behnke BJ et al (2016) Effects of spaceflight on the murine mandible: possible factors mediating skeletal changes in non-weight bearing bones of the head. Bone 83:156–161

    Article  Google Scholar 

  • Hayashida Y, Kawamura T, Hori-e R, Yamashita I (2004) Retionic acid and its receptors are required for expression of aryl hydrocarbon receptor mRNA and embryonic development of blood vessel and bone in the medaka fish, Oryzias latipes. Zool Sci 21:541–551

    Article  CAS  Google Scholar 

  • Hibiya K, Katsumoto T, Kondo T, Kitabayashi I, Kudo A (2009) Brpf1, a subunit of the MOZ histone acetyl transferase complex, maintains expression of anterior and posterior Hox genes for proper patterning of craniofacial and caudal skeletons. Dev Biol 329:176–190

    Article  CAS  Google Scholar 

  • Ijiri K (1995) Fish mating experiment in space -What it aimed at and how it was prepared. Biol Sci Space 9:3–16

    Article  CAS  Google Scholar 

  • Inohaya K, Kudo A (2000) Temporal and spatial patterns of cbfa1 expression during embryonic development in the teleost, Oryzias latipes. Dev Genes Evol 210:570–574

    Article  CAS  Google Scholar 

  • Inohaya K, Takano Y, Kudo A (2007) The teleost intervertebral region acts as a growth center of the centrum: in vivo visualization of osteoblasts and their progenitors in transgenic fish. Dev Dyn 236:3031–3046

    Article  CAS  Google Scholar 

  • Inohaya K, Takano Y, Kudo A (2010) Production of wnt4b by floor plate cells is essential for the segmental patterning of the vertebral column in medaka. Development 137:1807–1813

    Article  CAS  Google Scholar 

  • Iwamatsu T (1997) The integrated book for the biology of the medaka. Daigakukyouiku, Okayama JAXA homepage. http://iss.jaxa.jp/en/kiboexp/pm/aqh/. Accessed 23 Apr 2017

  • Kawashima K, Yamaguchi A, Shinki T et al (1995) Microgravity generated by space flight has little effect on the growth and development of chick embryonic bone. Biol Sci Space 9:82–94

    Article  CAS  Google Scholar 

  • Keune JA, Branscum AJ, Iwaniec UT et al (2016) Effects of spaceflight on bone microarchitecture in the axial and appendicular skeleton in growing ovariectomized rats. Sci Rep 5:18671

    Article  Google Scholar 

  • Lindsey BW, Dumbarton TC, Moorman SJ, Smith FM, Croll RP (2011) Effects of simulated microgravity on the development of the swimbladder and buoyancy control in larval zebrafish. J Exp Zool 315:302–313

    Article  Google Scholar 

  • Mantoku A, Chatani M, Aono K et al (2016) Osteoblast and osteoclast behaviors in the turnover of attachment bones during medaka tooth replacement. Dev Biol 409:370–381

    Article  CAS  Google Scholar 

  • Masukawa M, Ochiai T, Kamigaichi S et al (2003) NASDA next generation aquatic habitat for space shuttle and ISS. Adv Space Res 32:1541–1546

    Article  CAS  Google Scholar 

  • Morey ER, Baylink DJ (1978) Inhibition of bone formation during space flight. Science 201:1138–1141

    Article  CAS  Google Scholar 

  • Murata Y, Yasuda T, Watanabe-Asaka T et al (2015) Histological and transcriptomic analysis of adult Japanese medaka sampled onboard the international space station. PLoS One 10:e0138799

    Article  Google Scholar 

  • Nemoto Y, Higuchi K, Baba O et al (2007) Multinucleate osteoclasts in medaka as evidence of active bone remodeling. Bone 40:399–408

    Article  CAS  Google Scholar 

  • Ohisa S, Inohaya K, Takano Y et al (2010) sec24d encoding a component of COPII is essential for vertebra formation, revealed by the analysis of the medaka mutant, vbi. Dev Biol 342:85–95

    Article  CAS  Google Scholar 

  • Parin VV, Pravetskiy VN, Gurovskiy NN et al (1968) Some biomedical results of the experiment performed onboard the COSMOS-110 biosatellite. Space Biol 2:7–14

    Google Scholar 

  • Rambaut PC, Goode AW (1985) Skeletal changes during space flight. Lancet 2:1050–1052

    Article  CAS  Google Scholar 

  • Sakaguchi S, Nakatani Y, Takamatsu N, Hori H, Kawakami A, Inohaya K, Kudo A (2006) Medaka unextented-fin mutants suggest a role for Hoxb8a in cell migration and osteoblast differentiation during appendage formation. Dev Biol 293:426–438

    Article  CAS  Google Scholar 

  • Sakamoto D, Kudo H, Inohaya K, Yokoi H, Narita T, Naruse K, Mitani H, Shima A, Ishikawa Y, Imai Y, Kudo A (2004) A mutation in the gene for γ-aminolevulinic acid dehydratase (ALAD) causes hypochromic anemia in the medaka, Oryzias latipes. Mech Dev 121:747–752

    Article  CAS  Google Scholar 

  • Sakimura T, Suzuki T, Matsubara et al (1999) NASDA aquatic animal experiment facilities for space shuttle. Biol Sci Space 13:314–320

    Article  CAS  Google Scholar 

  • Simmons DJ, Ruffell JE, Winter F et al (1983) Effect of spaceflight on the non-weight-bearing bones of rat skeleton. Am J Phys 244:319–326

    Google Scholar 

  • Takeshita S, Kaji K, Kudo A (2000) Identification and characterization of the new osteoclast progenitor with macrophage phenotypes being able to differentiate into mature osteoclasts. J Bone Miner Res 15:1477–1488

    Article  CAS  Google Scholar 

  • Takeyama K, Chatani M, Takano Y, Kudo A (2014) In-vivo imaging of the fracture healing in medaka revealed two types of osteoclasts before and after the callus formation by osteoblasts. Dev Biol 394:292–304

    Article  CAS  Google Scholar 

  • Takeyama K, Chatani M, Inohaya K, Kudo A (2016) TGFβ-2 signaling is essential for osteoblast migration and differentiation during fracture healing in medaka fish. Bone 86:68–78

    Article  CAS  Google Scholar 

  • Tanaka K, Ohisa S, Orihara N, Sakaguchi S, Horie K, Hibiya K, Konno S, Miyake A, Setiamarga D Takeda H, Imai Y, Kudo A (2004) Characterization of mutations affecting embryonic hematopoiesis in the medaka, Oryzias latipes. Mech Dev 121:739–746

    Article  CAS  Google Scholar 

  • Tavella S, Ruggiu A, Giuliani A et al (2012) Bone turnover in wild type and pleiotrophin-transgenic mice housed for three months in the international space station (ISS). PLoS One 7:e33179

    Article  CAS  Google Scholar 

  • Uchida S, Masukawa M, Kamigaichi S (2002) NASDA aquatic animal experiment facilities for space shuttle and ISS. Adv Sp Res 30:797–802

    Article  Google Scholar 

  • Vico L, Chappard D, Alexandre C et al (1987) Effects of weightlessness on bone mass and osteoclast number in pregnant rats after a five-day spaceflight (Cosmos 1514). Bone 8:95–103

    Article  CAS  Google Scholar 

  • Vico L, Collet P, Guignandon A et al (2000) Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet 355:1607–1611

    Article  CAS  Google Scholar 

  • Yasutake J, Inohaya K, Kudo A (2004) Twist functions in vertebral column formation in the medaka, Oryzias latipes. Mech Dev 121:883–894

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants-in-aid for scientific research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (16K15778 and 16H01635).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Kudo .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chatani, M., Kudo, A. (2019). Fish as a Model for Research in Space. In: Pathak, Y., Araújo dos Santos, M., Zea, L. (eds) Handbook of Space Pharmaceuticals. Springer, Cham. https://doi.org/10.1007/978-3-319-50909-9_5-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50909-9_5-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50909-9

  • Online ISBN: 978-3-319-50909-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics