Skip to main content

Populations of Planets in Multiple Star Systems

  • Reference work entry
  • First Online:
Handbook of Exoplanets

Abstract

Astronomers have discovered that both planets and binaries are abundant throughout the Galaxy. In combination, we know of over 100 planets in binary and higher-order multi-star systems, in both circumbinary and circumstellar configurations. In this chapter, we review these findings and some of their implications for the formation of both stars and planets. Most of the planets found have been circumstellar, where there is seemingly a ruinous influence of the second star if sufficiently close (\(\lesssim \)50 AU). Hosts of hot Jupiters have been a particularly popular target for binary star studies, showing an enhanced rate of stellar multiplicity for moderately wide binaries (beyond ≳100 AU). This was thought to be a sign of Kozai-Lidov migration; however recent studies have shown this mechanism to be too inefficient to account for the majority of hot Jupiters. A couple of dozen circumbinary planets have been proposed around both main sequence and evolved binaries. Around main sequence binaries, there are preliminary indications that the frequency of gas giants is as high as those around single stars. There is however a conspicuous absence of circumbinary planets around the tightest main sequence binaries with periods of just a few days, suggesting a unique, more disruptive formation history of such close stellar pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams ER, Dupree AK, Kulsea C, McCarthy D (2013) Adaptive optics images. II. 12 Kepler objects of interest and 15 confirmed transiting planets. AJ 146:9

    ADS  Google Scholar 

  • Agol E, Steffen J, Sari R, Clarkson W (2005) On detecting terrestrial planets with timing of giant planet transits. MNRAS 359:567

    ADS  Google Scholar 

  • Anglada-Escudé G, Amado PJ, Barnes J et al (2016) A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature 536:7617, 437

    Article  ADS  Google Scholar 

  • Applegate JH (1992) A mechanism for orbital period modulation in close binaries. ApJ 385:621

    ADS  Google Scholar 

  • Armstrong DJ, Martin DV, Brown G et al (2013) Placing limits on the transit timing variations of circumbinary exoplanets. MNRAS 434:3047

    ADS  Google Scholar 

  • Armstrong DJ, Osborn H, Brown D et al (2014) On the abundance of circumbinary planets. MNRAS 444:1873

    ADS  Google Scholar 

  • Artymowicz P, Lubow SH (1994) Dynamics of binary-disk interaction. 1: Resonances and disk gap sizes. ApJ 421:2

    ADS  Google Scholar 

  • Baranec C, Ziegler C, Law NM et al (2016) ROBO-AO Kepler planetary candidate survey. II. Adaptive optics imaging of 969 Kepler exoplanet candidate host stars. AJ 152:18

    Google Scholar 

  • Batygin K, Bodenheimer PH, Laughlin GP (2016) In situ formation and dynamical evolution of hot Jupiter systems. 829:114

    ADS  Google Scholar 

  • Bear E, Soker N (2014) First versus second generation planet formation in post common envelope binary (PCEB) planetary systems. MNRAS 444:1698

    ADS  Google Scholar 

  • Beaugé C, Nesvorny D (2012) Multiple-planet scattering and the origin of hot Jupiters. ApJ 751:119

    ADS  Google Scholar 

  • Bennett DP, Rhie SH, Udalski A, Gould A et al (2016) The first circumbinary planet found by microlensing: OGLE-2007-BLG-349L(AB)c. AJ 152:125

    ADS  Google Scholar 

  • Bergfors C, Brandner W, Daemgen S et al (2013) Stellar companions to exoplanet host stars: lucky imaging of transiting planet hosts. MNRAS 428:182

    ADS  Google Scholar 

  • Black DC (1982) A simple criterion for determining the dynamical stability of three-body systems. AJ 263:854

    Google Scholar 

  • Boley AC, Granados Contreras AP, Gladman B (2016) The in situ formation of giant planets at short orbital periods. ApJL 817:L17

    ADS  Google Scholar 

  • Bonavita M, Desidera S, Thalmann C et al (2016) SPOTS: the search for planets orbiting two stars II. First constraints on the frequency of sub-stellar companions on wide circumbinary orbits. A&A 593:A38

    ADS  Google Scholar 

  • Bowler BP (2016) Imaging extrasolar giant planets. PASP 128:968

    Google Scholar 

  • Bowler BP, Liu MC, Kraus AL, Mann AW (2014) Spectroscopic confirmation of young planetary-mass companions on wide orbits. ApJ 784:65

    ADS  Google Scholar 

  • Bryan ML, Knutson HA, Howard AW et al (2016) Statistics of long period gas giant planets in known planetary systems. ApJ 821:89

    ADS  Google Scholar 

  • Chatterjee S, Ford EB, Matsumura S, Rasio FA (2008) Dynamical outcomes of planet-planet scattering. ApJ 686:580

    ADS  Google Scholar 

  • Cheetham AC, Kraus AL, Ireland MJ et al (2015) Mapping the shores of the brown dwarf desert. IV. Ophiuchus. ApJ 813:83

    Google Scholar 

  • Cochran WD, Hatzes AP, Butler PR, Marcy GW (1997) The discovery of a planetary companion to 16 Cygni B. ApJ 483:457

    ADS  Google Scholar 

  • Correia ACM, Udry S, Mayor M et al (2005) A pair of planets around HD 202206 or a circumbinary planet? A&A 440:751

    ADS  Google Scholar 

  • Daemgen S, Hormuth F, Brandner W et al (2009) Binarity of transit host stars. Implications for planetary parameters. A&A 498:567

    Google Scholar 

  • Daemgen S, Petr-Gotzens MG, Correia S et al (2013) Protoplanetary disk evolution and stellar parameters of T Tauri binaries in Chamaeleon I. A&A 554:A43

    ADS  Google Scholar 

  • Daemgen S, Elliot Meyer R, Jayawardhana R, Petr-Gotzens MG (2016) The frequency of accretion disks around single stars: Chamaeleon I. A&A 586:A12

    ADS  Google Scholar 

  • Desidera S, Barbieri M (2007) Properties of planets in binary systems – the role of binary separation. A&A 462:345

    ADS  Google Scholar 

  • Doolin S, Blundell KM (2012) The dynamics and stability of circumbinary orbits. MNRAS 418:2656

    ADS  Google Scholar 

  • Duquennoy A, Mayor M (1991) Multiplicity among solar-type stars in the solar neighbourhood. II Distribution of the orbital elements in an unbiased sample. A&A 248:485

    Google Scholar 

  • Dvorak R (1986) Critical orbits in the elliptic restricted three-body problem. A&A 167:379

    ADS  MATH  Google Scholar 

  • Eggenberger A, Udry S (2007) Probing the impact of stellar duplicity on planet occurrence with spectroscopic and imaging observations. arXiv:0705.3173

    Google Scholar 

  • Eggenberger A, Mayor M, Naef D et al (2006) The CORALIE survey for southern extrasolar planets. XIV. HD 142022 b: a long-period planetary companion in a wide binary. A&A 447:1159

    ADS  Google Scholar 

  • Eggenberger A, Udry S, Chauvin G et al (2007) The impact of stellar duplicity on planet occurrence and properties. I. Observational results of a VLT/NACO search for stellar companions to 130 nearby stars with and without planets. A&A 474:273

    ADS  Google Scholar 

  • Eggenberger A, Udry S, Chauvin G et al (2011) Probing the impact of stellar duplicity on the frequency of giant planets: final results of our VLT/NACO survey. Proc IAU Symp 276: 409–410

    ADS  Google Scholar 

  • Eggleton PP, Kiseleva LG (1995) An empirical condition for stability of hierarchical triple systems. ApJ 455:640

    ADS  Google Scholar 

  • Eggleton PP, Kiseleva-Eggleton LG (2001) Orbital evolution in binary and triple stars, with an application to SS lacertae. ApJ 562:1012

    ADS  Google Scholar 

  • Evans DF, Southworth J, Maxted PFL et al (2016) High-resolution imaging of transiting extrasolar planetary systems (HITEP) I. Lucky imaging observations of 101 systems in the southern hemisphere. A&A 589:A58

    Google Scholar 

  • Fabrycky DC, Tremaine S (2007) Shrinking binary and planetary orbits by Kozai cycles with tidal friction. ApJ 669:1298

    ADS  Google Scholar 

  • Fabrycky DC, Lissauer JJ, Ragozzine D et al (2014) Architecture of Kepler’s multi-transiting systems. II. New investigations with twice as many candidates. ApJ 790:146

    ADS  Google Scholar 

  • Faedi F, Staley T, Gomez Maqueo Chew Y et al (2013) Lucky imaging of transiting planet host stars with LuckyCam. MNRAS 433:2097

    ADS  Google Scholar 

  • Fleming DP, Barnes R, Graham DE et al. (2018) On the Lack of Circumbinary Planets Orbiting Isolated Binary Stars. ApJJ 858:86

    ADS  Google Scholar 

  • Fritz Benedict G, Harrison TE (2017) HD 202206: a circumbinary brown dwarf system. AJ 153:258

    ADS  Google Scholar 

  • Ginski C, Mugrauer M, Seeliger M, Eisenbeiss T (2012) A lucky imaging multiplicity study of exoplanet host stars. MNRAS 421:2498

    ADS  Google Scholar 

  • Ginski C, Mugrauer M, Seeliger M et al (2016) A lucky imaging multiplicity study of exoplanet host stars – II. MNRAS 457:2173

    ADS  Google Scholar 

  • Goldreich P, Tremaine S (1979) The excitation of density waves at the Lindblad and corotation resonances by an external potential. ApJ 233:857

    ADS  MathSciNet  Google Scholar 

  • Hamers AS, Perets HB, Portegies Zwart SF (2016) A triple origin for the lack of tight coplanar circumbinary planets around short-period binaries. MNRAS 455:3180

    ADS  Google Scholar 

  • Harrington RS (1968) Dynamical evolution of triple stars. ApJ 73:190

    ADS  Google Scholar 

  • Hébrard G, Bouchy F, Pont F et al (2008) Misaligned spin-orbit in the XO-3 planetary system. A&A 488:673

    ADS  Google Scholar 

  • Heintz WD (1969) A statistical study of binary stars. J R Astron Soc Can 63:275

    ADS  Google Scholar 

  • Holman MJ, Weigert PA (1999) Long-term stability of planets in binary systems. AJ 117:621

    ADS  Google Scholar 

  • Horch EP, Howell SB, Everett ME, Ciardi DR (2014) Most sub-arcsecond companions of Kepler exoplanet candidate host stars are gravitationally bound. ApJ 795:60

    ADS  Google Scholar 

  • Howard AW, Marcy GW, Johnson JA, et al (2010) The occurrence and mass distribution of close-in super-Earths, Neptunes, and Jupiters. Science 330:653

    ADS  Google Scholar 

  • Howell KC (1984) Three-dimensional periodic ‘Halo’ orbits. Celest Mech 32:53

    ADS  MathSciNet  MATH  Google Scholar 

  • Innanen KA, Zheng JQ, Mikkola S, Valtonen MJ (1997) The Kozai mechanism and the stability of planetary orbits in binary star systems. AJ 113:5

    Google Scholar 

  • Johnson JA, Aller KM, Howard AW, Crepp JR (2010) Giant planet occurrence in the stellar mass-metallicity plane. PASP 122:905

    ADS  Google Scholar 

  • Kaib NA, Raymond SN, Duncan M (2013) Planetary system disruption by Galactic perturbations to wide binary stars. Nature 493:381

    ADS  Google Scholar 

  • Klagyivik P, Deeg HJ, Cabrera J et al (2017) Limits to the presence of transiting circumbinary planets in CoRoT data. A&A 602:A117

    ADS  Google Scholar 

  • Kley W, Haghighipour N (2014) Modeling circumbinary planets: the case of Kepler-38. A&A 564:A72

    ADS  Google Scholar 

  • Knutson HA, Fulton BJ, Montet BT, Kao M et al (2014) Friends of hot Jupiters. I. A radial velocity search for massive, longperiod companions to close-in gas giant planets. ApJ 785:126

    ADS  Google Scholar 

  • Konacki M (2005) Precision radial velocities of double-lined spectroscopic binaries with an iodine absorption cell. ApJ 626:431

    ADS  Google Scholar 

  • Konacki M, Muterspaugh MW, Kulkarni SR, Helminiak KG (2010) The radial velocity TATOOINE search for circumbinary planets: planet detection limits for a sample of double-lined binary stars–initial results from Keck I/Hires, Shane/CAT/Hamspec, and TNG/Sarg observations. ApJ 719:1293

    ADS  Google Scholar 

  • Kostov VB, McCullough PR, Hinse TC et al (2013) A gas giant circumbinary planet transiting the F star primary of the eclipsing binary star KIC 4862625 and the independent discovery and characterization of the two transiting planets in the Kepler-47 system. ApJ 770:52

    ADS  Google Scholar 

  • Kozai Y (1962) Secular perturbations of asteroids with high inclination and eccentricity. ApJ 67:591

    ADS  MathSciNet  Google Scholar 

  • Kraus AL, Ireland MJ, Hillenbrand LA, Martinache F (2012) The role of multiplicity in disk evolution and planet formation. ApJ 745:19

    ADS  Google Scholar 

  • Kraus AL, Ireland MJ, Cieza LA, Hinkley S et al (2014) Three wide planetary-mass companions to FW Tau, ROXs 12, and ROXs 42B. ApJ 781:20

    ADS  Google Scholar 

  • Kraus AL, Ireland MJ, Huber D (2016) The impact of stellar multiplicity on planetary systems. I. The ruinous influence of close binary companions. AJ 152:8

    ADS  Google Scholar 

  • Lai D (2014) Star–disc–binary interactions in protoplanetary disc systems and primordial spin–orbit misalignments. MNRAS 440:3532

    ADS  Google Scholar 

  • Law NM, Morton T, Baranec C et al (2014) Robotic laser adaptive optics imaging of 715 Kepler exoplanet candidates using ROBO-AO. ApJ 791:35

    ADS  Google Scholar 

  • Lee JW, Kim S-L, Kim C-H, Koch RH et al (2009) The sdB+M eclipsing system HW virginis and its circumbinary planets. AJ 137:3181

    ADS  Google Scholar 

  • Li G , Holman MJ, Tao M (2016) Uncovering circumbinary planetary architectural properties from selection biases. ApJ 831:96

    ADS  Google Scholar 

  • Lidov ML (1961) The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies. Iskusstvennie Sputniki Zemli 8:5

    Google Scholar 

  • Lidov ML (1962) The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies. P&SS 9:719

    ADS  Google Scholar 

  • Lidov ML, Ziglin SL (1976) Non-restricted double-averaged three body problem in Hill’s case. Celest Mech 13:471

    ADS  MathSciNet  MATH  Google Scholar 

  • Lin DNC, Papaloizou J (1979) Tidal torques on accretion discs in binary systems with extreme mass ratios. MNRAS 186:799

    ADS  MATH  Google Scholar 

  • Lines S, Leinhard ZM, Paardekooper S et al (2014) Forming circumbinary planets: N-body simulations of Kepler-34. ApJL 782:L11

    ADS  Google Scholar 

  • Liu B, Mũnoz DJ, Lai D (2015) Suppression of extreme orbital evolution in triple systems with short-range forces. MNRAS 447:747

    ADS  Google Scholar 

  • Matsakos T, Königl A (2015) A hot Jupiter for breakfast? Early stellar ingestion of planets may be common. ApJL 809:L20

    ADS  Google Scholar 

  • Matsakos T, Königl A (2017) The gravitational interaction between planets on inclined orbits and protoplanetary disks as the origin of primordial spin-orbit misalignments. ApJ 153:60

    ADS  Google Scholar 

  • Mardling RA, Aarseth SJ (2001) Tidal interactions in star cluster simulations. MNRAS 304:730

    Google Scholar 

  • Martin DV (2017a) Circumbinary planets – II. When transits come and go. MNRAS 465:3235

    ADS  Google Scholar 

  • Martin DV (2017b) Transit probability of precessing circumstellar planets, in binaries and exomoons. MNRAS 467:1694

    ADS  Google Scholar 

  • Martin DV, Triaud AHMJ (2014) Planets transiting non-eclipsing binaries. A&A 570:A91

    ADS  Google Scholar 

  • Martin DV, Triaud AHMJ (2015) Circumbinary planets – why they are so likely to transit. MNRAS 449:781

    ADS  Google Scholar 

  • Martin DV, Triaud AHMJ (2016) Kozai-Lidov cycles towards the limit of circumbinary planets. MNRAS 455:L46

    ADS  Google Scholar 

  • Martin DV, Mazeh T, Fabrycky DC (2015) No circumbinary planets transiting the tightest Kepler binaries – a possible fingerprint of a third star. MNRAS 453:3354

    ADS  Google Scholar 

  • Masset FS, Papaloizou J, (2003) Runaway migration and the formation of hot Jupiters. ApJ 588:494

    ADS  Google Scholar 

  • Mayer L, Wadsley J, Quinn T, Stadel J (2005) Gravitational instability in binary protoplanetary discs: new constraints on giant planet formation. MNRAS 363:641

    ADS  Google Scholar 

  • Mayor M, Queloz D (1995) A Jupiter-mass companion to a solar-type star. Nature 378:355

    ADS  Google Scholar 

  • Mayor M, Marmier M, Lovis C, Udry S et al (2011) The HARPS search for southern extra-solar planets XXXIV. Occurrence, mass distribution and orbital properties of super-Earths and Neptune-mass planets. arXiv:1109.2497

    Google Scholar 

  • Mazeh T, Shaham J (1979) The orbital evolution of close triple systems – the binary eccentricity. A&A 77:145

    ADS  Google Scholar 

  • Migaszewski C, Goździewski K (2011) The non-resonant, relativistic dynamics of circumbinary planets. MNRAS 411:565

    ADS  Google Scholar 

  • Moe M, Kratter KM (2018) Dynamical formation of close binaries during the pre-main-sequence phase. ApJ 854:44

    ADS  Google Scholar 

  • Moutou C, Vigan A, Mesa S et al (2017) Eccentricity in planetary systems and the role of binarity: sample definition, initial results, and the system of HD 211847. A&A 602:A87

    ADS  Google Scholar 

  • Mudryk LR, Wu Y (2006) Resonance overlap is responsible for ejecting planets in binary systems. ApJ 639:423

    ADS  Google Scholar 

  • Muñoz DJ, Lai D (2015) Survival of planets around shrinking stellar binaries. PNAS 112:9264

    ADS  Google Scholar 

  • Naoz S, Fabrycky DC (2014) Mergers and obliquities in stellar triples. ApJ 793:137

    ADS  Google Scholar 

  • Naoz S, Farr WM, Lithwick Y et al (2011) Hot Jupiters from secular planet–planet interactions. Nature 473:187

    ADS  Google Scholar 

  • Naoz S, Farr WM, Rasio FA (2012) Resonant post-newtonian eccentricity excitation in hierarchical three-body systems. ApJL 754:2

    Google Scholar 

  • Naoz S, Farr WM, Lithwick Y et al (2013) Secular dynamics in hierarchical three-body systems. MNRAS 431:2155

    ADS  Google Scholar 

  • Nelson AF (2000) Planet formation is unlikely in equal-mass binary systems with A ∼ 50 AU. ApJ 537:L65

    ADS  Google Scholar 

  • Ngo H, Knutson HA, Hinkley S et al (2015) Friends of hot Jupiters. II. No correspondence between hot-Jupiter spin-orbit misalignment and the incidence of directly imaged stellar companions. ApJ 800:138

    ADS  Google Scholar 

  • Ngo H, Knutson HA, Hinkley S et al (2016) Friends of hot Jupiters. IV. Stellar companions beyond 50 AU might facilitate giant planet formation, but most are unlikely to cause Kozai-Lidov migration. ApJ 827:8

    ADS  Google Scholar 

  • Ngo H, Knutson HA, Bryan ML et al (2017) No difference in orbital parameters of RV-detected giant planets between 0.1 and 5 AU in single versus multi-stellar systems. AJ 153:242

    ADS  Google Scholar 

  • Nielsen EL, De Rosa RJ, Rameau J et al (2017) Evidence that the directly imaged planet HD 131399 Ab is a background star. AJ 154:218

    ADS  Google Scholar 

  • Orosz JA, Welsh WF, Carter JA et al (2012) Kepler-47: a transiting circumbinary multiplanet system. Science 337:1511

    ADS  Google Scholar 

  • Oshagh M, Heller R, Dreizler S (2017) How eclipse time variations, eclipse duration variations, and radial velocities can reveal S-type planets in close eclipsing binaries. MNRAS 466:4683

    ADS  Google Scholar 

  • Paardekooper SJ, Leinhard ZM, Thébault P, Baruteau C (2012) How not to build TATOOINE: the difficulty of in situ formation of circumbinary planets Kepler 16b, Kepler 34b, and Kepler 35b. ApJL 754:L16

    ADS  Google Scholar 

  • Perets HP (2010) Second generation planets. arXiv:1001.0581

    Google Scholar 

  • Petigura EA, Howard AW, Marcy GW (2013) Prevalence of Earth-size planets orbiting sun-like stars. PNAS 110:19273

    ADS  Google Scholar 

  • Petrovich C (2015) Steady-state planet migration by the Kozai-Lidov mechanism in stellar binaries. ApJ 799:27

    ADS  Google Scholar 

  • Pilat-Lohinger E, Funk B, Dvorak R (2003) Stability limits in double stars – a study of inclined planetary orbits. A&A 400:1085

    ADS  Google Scholar 

  • Pierens A, Nelson RP (2013) Migration and gas accretion scenarios for the Kepler 16, 34, and 35 circumbinary planets. A&A 556:A134

    ADS  Google Scholar 

  • Piskorz D, Knutson HA, Ngo H et al (2015) Friends of hot Jupiters. III. An infrared spectroscopic search for low-mass stellar companions. ApJ 814:148

    ADS  Google Scholar 

  • Poleski R, Skowron J, Udalski A et al (2014) Triple microlens OGLE-2008-BLG-092L: binary stellar system with a circumprimary Uranus-type planet. ApJ 795:42

    ADS  Google Scholar 

  • Pollack JB, Hubickyj O, Bodenheimer P et al (1996) Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124:62

    ADS  Google Scholar 

  • Prša A, Batalha N, Slawson RW, Doyle LR, Welsh WF (2011) Kepler eclipsing binary stars. I. Catalog and principal characterization of 1879 eclipsing binaries in the first data release. AJ 141:83

    ADS  Google Scholar 

  • Quarles B, Satyal S, Kostov V, Kaib N, Haghighipour N (2018) Stability limits of circumbinary planets: is there a pile-up in the Kepler CBPs? ApJ 856:150

    ADS  Google Scholar 

  • Rafikov RR (2006) Atmospheres of protoplanetary cores: critical mass for nucleated instability. ApJ 648:666

    ADS  Google Scholar 

  • Raghavan D, McAlister HA, Henry TJ et al (2010) A survey of stellar families: multiplicity of solartype stars. ApJS 190:1

    ADS  Google Scholar 

  • Rasio FA, Ford EB (1996) Dynamical instabilities and the formation of extrasolar planetary systems. Science 274:954

    ADS  Google Scholar 

  • Sahlmann J, Triaud AHMJ, Martin DV (2015) Gaia’s potential for the discovery of circumbinary planets. MNRAS 447:287

    ADS  Google Scholar 

  • Santerne A, Hebard G, Deleuil M et al (2014) SOPHIE velocimetry of Kepler transit candidates. XII. KOI-1257 b: a highly eccentric three-month period transiting exoplanet. A&A 571:A37

    Google Scholar 

  • Schneider J (1994) On the occultations of a binary star by a circum-orbiting dark companion. Planet Science Sci 42:539

    ADS  Google Scholar 

  • Schneider J, Chevreton M (1990) The photometric search for earth-sized extrasolar planets by occultation in binary systems. A&A 232:251

    ADS  Google Scholar 

  • Schwamb ME, Orosz JA, Carter JA et al (2013) Planet hunters: a transiting circumbinary planet in a quadruple star system. ApJ 768:127

    ADS  Google Scholar 

  • Schwarz R, Haghighipour N, Eggl S et al (2011) Prospects of the detection of circumbinary planets With Kepler and CoRoT using the variations of eclipse timing. MNRAS 414:2763

    ADS  Google Scholar 

  • Schwarz R, Bazsó Á, Funk B, Zechner (2015) Eclipse timing variations to detect possible Trojan planets in binary systems. MNRAS 453:2308

    ADS  Google Scholar 

  • Schwarz R, Funk B, Zechner R, Bazsó Á (2016) New prospects for observing and cataloguing exoplanets in well-detached binaries. MNRAS 460:3598

    ADS  Google Scholar 

  • Spalding C, Batygin K (2014) Early excitation of spin-orbit misalignments in close-in planetary systems. ApJ 790:42

    ADS  Google Scholar 

  • Spalding C, Batygin K (2015) Magnetic origins of the stellar mass-obliquity correlation in planetary systems. ApJ 811:82

    ADS  Google Scholar 

  • Thalmann C, Desidera S, Bonavita M et al (2014) SPOTS: the search for planets orbiting two stars I. Survey description and first observations. A&A 572:A91

    ADS  Google Scholar 

  • Tokovinin A (2014) From binaries to multiples. II. Hierarchical multiplicity of F and G dwarfs. AJ 147:86

    ADS  Google Scholar 

  • Tokovinin A, Kiyaeva O (2016) Eccentricity distribution of wide binaries. MNRAS 456:2070

    ADS  Google Scholar 

  • Tokovinin A, Thomas S, Sterzik M, Udry S (2006) Tertiary companions to close spectroscopic binaries. A&A 450:68

    ADS  Google Scholar 

  • Toyota E, Itoh Y, Ishiguma S et al (2009) Radial velocity search for extrasolar planets in visual binary systems. PASJ 61:19

    ADS  Google Scholar 

  • Triaud AHMJ, Collier Cameron A, Queloz D et al (2010) Spin-orbit angle measurements for six southern transiting planets – new insights into the dynamical origins of hot Jupiters. A&A 524:A25

    ADS  Google Scholar 

  • Triaud AHMJ, Neveu-VanMalle M, Lendl M et al (2017) Peculiar architectures for the WASP-53 and WASP-81 planet-hosting systems. MNRAS 467:1714

    ADS  Google Scholar 

  • Wagner K, Apai D, Kasper M et al (2016) Direct imaging discovery of a Jovian exoplanet within a triple-star system. Science 353:673

    ADS  Google Scholar 

  • Wang J, Xie J-W, Barclay T, Fischer D (2014a) Influence of stellar multiplicity on planet formation. I. Evidence of suppressed planet formation due to stellar companions within 20 AU and validation of four planets from the Kepler multiple planet candidates. ApJ 783:4

    ADS  Google Scholar 

  • Wang J, Fischer D, Xi J-W, Ciardi DR (2014b) Influence of stellar multiplicity on planet formation. II. Planets are less common in multiple-star systems with separations smaller than 1500 AU. ApJ 791:111

    ADS  Google Scholar 

  • Wang J, Fischer DA, Horch EP, Huang X (2015a) Influence of stellar multiplicity on planet formation. III. Adaptive optics imaging of Kepler stars with gas giant planets. ApJ 799:229

    Google Scholar 

  • Wang J, Fischer D, Horch E, Xi J-W (2015b) Influence of stellar multiplicity on planet formation. IV. Adaptive optics imaging of Kepler stars with multiple transiting planet candidates. ApJ 806:248

    Google Scholar 

  • Ward WR (1997) Icarus Protoplanet migration by nebula tides. 126:261

    ADS  Google Scholar 

  • Welsh WF, Orosz JA, Carter JA et al (2012) Transiting circumbinary planets Kepler-34 b and Kepler-35 b. Nature 481:475

    ADS  Google Scholar 

  • Welsh WF, Orosz JA, Carter JA, Fabrycky DC (2014) Recent Kepler results on circumbinary planets. Proc IAU 293:125

    ADS  Google Scholar 

  • Weidenschilling SJ, Marzari F (1996) Gravitational scattering as a possible origin for giant planets at small stellar distances. Nature 384:619

    ADS  Google Scholar 

  • Weinberger AJ, Becklin EE, Song I, Zuckerman B (2011) He absence of cold dust and the mineralogy and origin of the warm dust encircling BD + 20 307. ApJ 726:72

    ADS  Google Scholar 

  • Winn JN, Johnson JA, Albrecht S (2009) HAT-P-7: a retrograde or polar orbit, and a third body. ApJL 703:L99

    ADS  Google Scholar 

  • Wright JT, Marcy GW, Howard AW et al (2012) The frequency of hot Jupiters orbiting nearby solartype stars. ApJ 753:160

    ADS  Google Scholar 

  • Wu Y, Murray NW (2003) Planet migration and binary companions: the case of HD 80606b. ApJ 589:605

    ADS  Google Scholar 

  • Wu Y, Murray NW, Michael Ramsahai J (2007) Hot Jupiters in binary star systems. ApJ 670:820

    ADS  Google Scholar 

  • Xu W, Lai D (2016) Disruption of planetary orbits through evection resonance with an external companion: circumbinary planets and multiplanet systems. MNRAS 459:2925

    ADS  Google Scholar 

  • Ziegler C, Law NM, Morton T et al (2017) Robo-AO Kepler survey IV: the effect of nearby stars on 3857 planetary candidate systems. AJ 153:66

    ADS  Google Scholar 

  • Ziegler C, Law NM, Baranec C et al (2018) Robo-AO Kepler survey V: the effect of physically associated stellar companions on planetary systems. arXiv:1712.04454

    Google Scholar 

  • Ziglin SL (1975) Secular evolution of the orbit of a planet in a binary-star system. Sov Astron Lett 1:194

    ADS  Google Scholar 

  • Zorotovic M, Schreiber MR (2013) Origin of apparent period variations in eclipsing post-commonenvelope binaries. A&A 549:A95

    ADS  Google Scholar 

  • Zuckerman B (2014) The occurrence of wide-orbit planets in binary star systems. ApJ 791:L27

    ADS  Google Scholar 

  • Zuckerman B, Fekel FC, Williamson MH, Henry GW, Muno MP (2008) Planetary systems around close binary stars: the case of the very dusty, sun-like, spectroscopic binary BD+20 307. ApJ 688:1345–1351

    ADS  Google Scholar 

Download references

Acknowledgements

Thank you to Dave Armstrong, Sebastian Daemgen, Dan Fabrycky, Elliott Horch, Adam Kraus, Henry Ngo, Richard Schwarz and Amaury Triaud for expert insights on earlier versions of the manuscript. I also thank section editor Natalie Batalha for her thorough review, and book editors Hans Deeg and Juan Antonio Belmonte for giving me the opportunity to write this chapter. Finally, I acknowledge funding and support from the Swiss National Science Foundation, The University of Chicago and the Unversité de Genève.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David V. Martin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Martin, D.V. (2018). Populations of Planets in Multiple Star Systems. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-55333-7_156

Download citation

Publish with us

Policies and ethics