Skip to main content

EEG/MEG Source Estimation and Spatial Filtering: The Linear Toolkit

  • Living reference work entry
  • First Online:
Magnetoencephalography

Abstract

The choice and application of EEG/MEG source estimation methods require an understanding of their underlying modeling assumptions as well as tools to evaluate their spatial resolution and localization performance. Linear methods are the most popular for EEG/MEG source estimation, because most of them are computationally efficient and easy to apply to large data sets. Our chapter will describe essential concepts for the understanding and evaluation of linear methods, also for researchers without a background in signal analysis. These concepts include the superposition principle, resolution matrix, point-spread and cross-talk functions (“leakage”), regularization, and the use of prior information. Due to the superposition principle, linear methods can be meaningfully evaluated on the basis of point sources to draw conclusions about their general resolution properties, i.e., for the case of complex source distributions. On this basis, metrics can be defined to objectively quantify localization accuracy and spatial resolution of linear estimators. We will use those to evaluate the benefit of combining EEG and MEG, as well as to demonstrate the trade-offs made by different source estimation methods between different resolution criteria. We will describe ways to suppress noise via regularization and to incorporate prior knowledge into linear source estimators. The interpretation of linear estimators as spatial filters will be discussed, highlighting special properties of adaptive spatial filters such as beamformers. Finally, we will briefly describe how spatial filters can be flexibly designed using multiple types of constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahlfors SP, Simpson GV (2004) Geometrical interpretation of fMRI-guided MEG/EEG inverse estimates. NeuroImage 22(1):323–332

    Article  Google Scholar 

  • Backus GE, Gilbert JF (1968) The resolving power of gross earth data. Geophys J R Astron Soc 16:169–205

    Article  Google Scholar 

  • Bertero M, De Mol C, Pike ER (1985) Linear inverse problems with discrete data. I: general formulation and singular system analysis. Inverse Prob 1(4):301–330

    Article  MathSciNet  Google Scholar 

  • Bertero M, De Mol C, Pike ER (1988) Linear inverse problems with discrete data: II. Stability and regularisation. Inverse Prob 4(3):573–594

    Article  MathSciNet  Google Scholar 

  • Boto E, Holmes N, Leggett J, Roberts G, Shah V, Meyer SS, Munoz LD, Mullinger KJ, Tierney TM, Bestmann S, Barnes GR, Bowtell R, Brookes MJ (2018) Moving magnetoencephalography towards real-world applications with a wearable system. Nature 555(7698):657–661

    Article  Google Scholar 

  • Brookes MJ, Stevenson CM, Barnes GR, Hillebrand A, Simpson MI, Francis ST, Morris PG (2007) Beamformer reconstruction of correlated sources using a modified source model. NeuroImage 34(4):1454–1465

    Article  Google Scholar 

  • Colclough GL, Brookes MJ, Smith SM, Woolrich MW (2015) A symmetric multivariate leakage correction for MEG connectomes. NeuroImage 117:439–448

    Article  Google Scholar 

  • Dalal SS, Guggisberg AG, Edwards E, Sekihara K, Findlay AM, Canolty RT, Berger MS, Knight RT, Barbaro NM, Kirsch HE, Nagarajan SS (2008) Five-dimensional neuroimaging: localisation of the time-frequency dynamics of cortical activity. NeuroImage 40(4):1686–1700

    Article  Google Scholar 

  • Dale AM, Halgren E (2001) Spatiotemporal mapping of brain activity by integration of multiple imaging modalities. Curr Opin Neurobiol 11(2):202–208

    Article  Google Scholar 

  • Dale AM, Sereno MI (1993) Improved localisation of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. J Cogn Neurosci 5(2):162–176

    Article  Google Scholar 

  • Dale AM, Liu AK, Fischl BR, Buckner RL, Belliveau JW, Lewine JD, Halgren E (2000) Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 26(1):55–67

    Article  Google Scholar 

  • Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21

    Article  Google Scholar 

  • Engemann DA, Gramfort A (2015) Automated model selection in covariance estimation and spatial whitening of MEG and EEG signals. NeuroImage 108:328–342

    Article  Google Scholar 

  • Fuchs M, Wagner M, Wischmann HA, Kohler T, Theissen A, Drenckhahn R, Buchner H (1998) Improving source reconstructions by combining bioelectric and biomagnetic data. Electroencephalogr Clin Neurophysiol 107(2):93–111

    Article  Google Scholar 

  • Fuchs M, Wagner M, Kohler T, Wischmann HA (1999) Linear and nonlinear current density reconstructions. J Clin Neurophysiol 16(3):267–295

    Article  Google Scholar 

  • Geselowitz DB (1967) On bioelectric potentials in an inhomogeneous volume conductor. Biophys J 7:1–11

    Article  Google Scholar 

  • Gramfort A, Luessi M, Larson E, Engemann DA, Strohmeier D, Brodbeck C, Goj R, Jas M, Brooks T, Parkkonen L, Hamalainen M (2013) MEG and EEG data analysis with MNE-python. Front Neurosci 7:267

    Article  Google Scholar 

  • Grave de Peralta Menendez R, Hauk O, Gonzalez Andino S, Vogt H, Michel C (1997) Linear inverse solutions with optimal resolution kernels applied to electromagnetic tomography. Hum Brain Mapp 5(6):454–467

    Article  Google Scholar 

  • Hämäläinen MS, Ilmoniemi RJ (1984) Interpreting measured magnetic fields of the brain: minimum norm estimates of current distributions. Technical report TKK-F-A559. Helsinki University of Technology

    Google Scholar 

  • Hansen PC (1994) Regularization tools: a Matlab package for analysis and solution of discrete ill-posed problems. Numer Algorithms. 6:1–35

    Article  MathSciNet  Google Scholar 

  • Hansen PC, Prost O’Leary D (1993) The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J Sci Comput 14(6):1487–1503

    Article  MathSciNet  Google Scholar 

  • Hauk O (2004) Keep it simple: a case for using classical minimum norm estimation in the analysis of EEG and MEG data. NeuroImage 21(4):1612–1621

    Article  Google Scholar 

  • Hauk O (2018) Is there a problem with methods skills in cognitive neuroscience? Evidence from an online survey. bioRxiv: 329458, https://doi.org/10.1101/329458. May 25, 2018

  • Hauk O, Stenroos M (2014) A framework for the design of flexible cross-talk functions for spatial filtering of EEG/MEG data: DeFleCT. Hum Brain Mapp 35(4):1642–1653

    Article  Google Scholar 

  • Hauk O, Wakeman DG, Henson R (2011) Comparison of noise-normalized minimum norm estimates for MEG analysis using multiple resolution metrics. NeuroImage 54(3):1966–1974

    Article  Google Scholar 

  • Henson RNA (2010) Multimodal integration: constraining MEG localisation with EEG and fMRI. In: 17th international conference on biomagnetism advances in biomagnetism – Biomag2010, vol 28, pp 97–100

    Google Scholar 

  • Henson RN, Wakeman DG, Litvak V, Friston KJ (2011) A parametric empirical Bayesian framework for the EEG/MEG inverse problem: generative models for multi-subject and multi-modal integration. Front Hum Neurosci 5:76, pp 1–16

    Google Scholar 

  • Krishnaswamy P, Obregon-Henao G, Ahveninen J, Khan S, Babadi B, Iglesias JE, Hamalainen MS, Purdon PL (2017) Sparsity enables estimation of both subcortical and cortical activity from MEG and EEG. Proc Natl Acad Sci U S A 114(48):E10465–E10474

    Article  Google Scholar 

  • Lin FH, Witzel T, Ahlfors SP, Stufflebeam SM, Belliveau JW, Hamalainen MS (2006) Assessing and improving the spatial accuracy in MEG source localisation by depth-weighted minimum-norm estimates. NeuroImage 31(1):160–171

    Article  Google Scholar 

  • Litvak V, Mattout J, Kiebel S, Phillips C, Henson R, Kilner J, Barnes G, Oostenveld R, Daunizeau J, Flandin G, Penny W, Friston K (2011) EEG and MEG data analysis in SPM8. Comput Intell Neurosci 2011:852961

    Article  Google Scholar 

  • Liu AK, Belliveau JW, Dale AM (1998) Spatiotemporal imaging of human brain activity using functional MRI constrained magnetoencephalography data: Monte Carlo simulations. Proc Natl Acad Sci U S A 95(15):8945–8950

    Article  Google Scholar 

  • Liu AK, Dale AM, Belliveau JW (2002) Monte Carlo simulation studies of EEG and MEG localisation accuracy. Hum Brain Mapp 16(1):47–62

    Article  Google Scholar 

  • Menke W (1989) Geophysical data analysis: discrete inverse theory. Academic, San Diego

    MATH  Google Scholar 

  • Mohseni HR, Kringelbach ML, Probert Smith P, Green AL, Parsons CE, Young KS, Brittain JS, Hyam JA, Schweder PM, Stein JF, Aziz TZ (2010) Application of a null-beamformer to source localisation in MEG data of deep brain stimulation. Conf Proc IEEE Eng Med Biol Soc 2010:4120–4123

    Google Scholar 

  • Molins A, Stufflebeam SM, Brown EN, Hamalainen MS (2008) Quantification of the benefit from integrating MEG and EEG data in minimum l(2)-norm estimation. NeuroImage 42(3):1069–1077

    Article  Google Scholar 

  • Mosher JC, Leahy RM, Lewis PS (1999) EEG and MEG: forward solutions for inverse methods. IEEE Trans Biomed Eng 46(3):245–259

    Article  Google Scholar 

  • Oostenveld R, Fries P, Maris E, Schoffelen JM (2011) FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 2011:156869

    Article  Google Scholar 

  • Palva JM, Wang SH, Palva S, Zhigalov A, Monto S, Brookes MJ, Schoffelen JM, Jerbi K (2018) Ghost interactions in MEG/EEG source space: a note of caution on inter-areal coupling measures. NeuroImage 173:632–643

    Article  Google Scholar 

  • Pascual-Marqui RD (2002) Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 24(Suppl D):5–12

    Google Scholar 

  • Pascual-Marqui RD, Esslen M, Kochi K, Lehmann D (2002) Functional imaging with low-resolution brain electromagnetic tomography (LORETA): a review. Methods Find Exp Clin Pharmacol 24(Suppl C):91–95

    Google Scholar 

  • Sarvas J (1987) Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys Med Biol 32(1):11–22

    Article  Google Scholar 

  • Sekihara K, Nagarajan SS (2008) Adaptive spatial filters for electromagnetic brain imaging. Springer, Berlin/Heidelberg

    Google Scholar 

  • Sekihara K, Nagarajan SS (2015) Electromagnetic brain imaging – a Bayesian perspective. Springer, Cham

    Book  Google Scholar 

  • Stenroos M, Sarvas J (2012) Bioelectromagnetic forward problem: isolated source approach revis(it)ed. Phys Med Biol 57(11):3517–3535

    Article  Google Scholar 

  • Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM (2011) Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intell Neurosci 2011:879716

    Article  Google Scholar 

  • Van Veen BD, van Drongelen W, Yuchtman M, Suzuki A (1997) Localisation of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans Biomed Eng 44(9):867–880

    Article  Google Scholar 

  • Vorwerk J, Clerc M, Burger M, Wolters CH (2012) Comparison of boundary element and finite element approaches to the EEG forward problem. Biomed Tech (Berl) 57(Suppl 1):795–798

    Google Scholar 

  • Wens V, Marty B, Mary A, Bourguignon M, Op de Beeck M, Goldman S, Van Bogaert P, Peigneux P, De Tiege X (2015) A geometric correction scheme for spatial leakage effects in MEG/EEG seed-based functional connectivity mapping. Hum Brain Mapp 36(11):4604–4621

    Article  Google Scholar 

  • Williams N, Arnulfo G, Wang S, Nobili L, Palva S, Palva M (2018) Comparison of methods to identify modules in noisy or incomplete brain networks. Brain Connect 9:128–143

    Article  Google Scholar 

  • Woolrich M, Hunt L, Groves A, Barnes G (2011) MEG beamforming using Bayesian PCA for adaptive data covariance matrix regularization. NeuroImage 57(4):1466–1479

    Article  Google Scholar 

  • Woolrich MW, Baker A, Luckhoo H, Mohseni H, Barnes G, Brookes M, Rezek I (2013) Dynamic state allocation for MEG source reconstruction. NeuroImage 77:77–92

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Hauk .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hauk, O., Stenroos, M., Treder, M. (2019). EEG/MEG Source Estimation and Spatial Filtering: The Linear Toolkit. In: Supek, S., Aine, C. (eds) Magnetoencephalography. Springer, Cham. https://doi.org/10.1007/978-3-319-62657-4_85-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62657-4_85-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62657-4

  • Online ISBN: 978-3-319-62657-4

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics