Skip to main content

Saline Agriculture: A Climate Smart Integrated Approach for Climate Change Resilience in Degraded Land Areas

  • Living reference work entry
  • First Online:
Handbook of Climate Change Resilience

Abstract

Soil and water resources of the world are under increasing strain as a result of climate change and increasing population. Climate change has increased land degradation around the world as a result of increased drought, salinity, temperature rise, sodicity, and rising sea level. Plenty of good-quality water is required to reclaim degraded lands; however such water is not available in most of these areas. The extent of the degraded land areas is significant for food and energy production, particularly for the indigenous people of the degraded land areas. Saline agriculture is an integrated approach, using stress-resistant genetic resources to exploit the production potential of the degraded land and water resources. Saline agriculture involves a careful analysis of a degraded land area, including the soil and water analyses, climatic and market conditions, financial power of the farmers, and local culture. A large variety of genetic resources with diverse functions and stress resistance are available and can be exploited considering the site-specific conditions. This chapter discusses in detail the climate-smart integrated approach of saline agriculture with practical examples and a case study showing its potential for environmental sustainability, ecological rehabilitation, and climate change resilience in degraded land areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbas G, Saqib M, Akhtar J, Basra SMA (2013) Salinity tolerance potential of two acacia species at early seedling stage. Pak J Agric Sci 50:683–688

    Google Scholar 

  • Abbas G, Saqib M, Akhtar J, Murtaza G, Shahid M (2015) Effect of salinity on rhizosphere acidification and antioxidant activity of two acacia species. Can J For Res 45(1):124–129

    Article  CAS  Google Scholar 

  • Abbas G, Saqib M, Akhtar J, Murtaza G, Shahid M, Hussain A (2016) Relationship between rhizosphere acidification and phytoremediation in two acacia species. J Soils Sediments 16:1392–1399

    Article  CAS  Google Scholar 

  • Abbas G, Saqib M, Akhtar J, Murtaza G (2017) Physiological and biochemical characterization of Acacia stenophylla and Acacia albida exposed to salinity under hydroponic conditions. Can J For Res 47(9):1293–1301

    Article  CAS  Google Scholar 

  • Ahmad S, Ghafoor A, Akhtar ME, Khan MZ (2016) Implication of gypsum rates to optimize hydraulic conductivity for variable-texture saline-sodic soils reclamation. Land Degrad Dev 27:550–560

    Article  Google Scholar 

  • Arshad M, Silvestre J, Pinelli E, Kallerhoff J, Kaemmerer M, Tarigo A, Shahid M, Guiresse M, Pradere P, Dumat C (2008) A field study of lead phytoextraction by various scented Pelargonium cultivars. Chemosphere 71:2187–2192

    Article  CAS  Google Scholar 

  • Ashraf MY, Shirazi MU, Ashraf M, Sarwar G, Khan MA (2008) Utilization of salt-affected soils by growing some Acacia species. In: Khan MA, Weber DJ (eds) Ecophysiology of high salinity tolerant plants. Springer Science + Business Media, Springer, Dordrecht, pp 289–311

    Google Scholar 

  • Basavaraja PK, Sharma SD, Dhananjaya BN, Badrinath MS (2011) Acacia nilotica: a tree species for amelioration of sodic soils in central dry zone of Karnataka, India. Res J Agric Sci 2:311–316

    Google Scholar 

  • Bhushan G, Sharma SK, Sagar P, Seth N, Singh AP (2014) Role of arbuscular mycorrhiza fungi on tolerance to salinity of the tree legume Albizia lebbeck (L.) inoculated by rhizobium. Indian J Pharm Biol Res 2(1):45–50

    Article  Google Scholar 

  • Bouyoucos GJ (1962) Hydrometer method improved for making particle size analysis. J Agron 53:464–465

    Article  Google Scholar 

  • Dagar JC, Singh G, Singh NT (2001) Evaluation of forest and fruit trees used for rehabilitation of semiarid alkali-sodic soils in India. Arid Land Res Manag 15(2):115–133

    Article  CAS  Google Scholar 

  • Drake JA, Cavagnaro TR, Cunningham SC, Jackson WR, Patti AF (2016) Does biochar improve establishment of tree seedlings in saline sodic soils? Land Degrad Dev 27(1):52–59

    Article  Google Scholar 

  • Food and Agriculture Organization (FAO) (2008) Climate change and food security: a framework document. Rome. http://www.fao.org/forestry/15538-079b31d45081fe9c3dbc6ff34de4807e4.pdf

  • Gornall J, Betts R, Burke E, Clark R, Camp J, Willett K, Wiltshire A (2010) Implications of climate change for agricultural productivity in the early twenty-first century. Philos Trans R Soc Lond Ser B Biol Sci 365:2973–2989

    Article  Google Scholar 

  • Haigang L, Zhang F, Rengel Z, Shen J (2013) Rhizosphere properties in monocropping and intercropping systems between faba bean (Vicia faba L.) and maize (Zea mays L.) grown in a calcareous soil. Crop Pasture Sci 6:976–984

    Google Scholar 

  • Hütsch BW, Saqib M, Osthushenrich T, Schubert S (2014) Invertase activity limits grain yield of corn (Zea mays L.) under salt stress. J Plant Nutr Soil Sci 177:278–286

    Article  Google Scholar 

  • Ilyas M, Miller RW, Qureshi RH (1993) Hydraulic conductivity of saline-sodic soil after gypsum application and cropping. Soil Sci Soc Am J 57:1580–1585

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007) In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK

    Chapter  Google Scholar 

  • Jacobsen SE, Sørensen M, Pedersen SM, Weiner J (2015) Using our agrobiodiversity: plant-based solutions to feed the world. Agron Sustain Dev 35:1217–1235

    Article  Google Scholar 

  • Lauchli A, Grattan SR (2007) Plant growth and development under salinity stress. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in molecular breeding towards drought and salt tolerant crops. Springer, Dordrecht, pp 285–315

    Google Scholar 

  • Lobell D, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333:616–620

    Article  CAS  Google Scholar 

  • Mahmood A, Athar M, Qadri R, Mahmood N (2008) Effect of NaCl salinity on growth, nodulation and total nitrogen content in Sesbania sesban. Agric Conspec Sci 73(3):137–141

    Google Scholar 

  • Martin BC, George SJ, Price CA, Ryan MH, Tibbett M (2014) The role of root exuded low molecular weight organic anions in facilitating petroleum hydrocarbon degradation: current knowledge and future directions. Sci Total Environ 472:642–653

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Nasim M, Qureshi RH, Aziz T, Saqib M, Nawaz S, Sahi ST, Pervaiz S (2008) Growth and ionic composition of salt-stressed Eucalyptus camaldulensis and Eucalyptus tereticornis. Pak J Bot 40(2):799–805

    CAS  Google Scholar 

  • Oo AN, Iwai CB, Saenjan P (2015) Soil properties and maize growth in saline and nonsaline soils using cassava-industrial waste compost and vermicompost with or without earthworms. Land Degrad Dev 26(3):300–310

    Article  Google Scholar 

  • Qadir M, Oster JD (2004) Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture. Sci Total Environ 323:1–19

    Article  CAS  Google Scholar 

  • Qadir M, Qureshi RH, Ahmad N (1996) Reclamation of a saline-sodic soil by gypsum and Leptochloa fusca. Geoderma 74:207–217

    Article  Google Scholar 

  • Qadir M, Qureshi RH, Ahmad N (1997) Nutrient availability in a calcareous saline-sodic soil during vegetative bioremediation. Arid Soil Res Rehabil 11:343–352

    Article  CAS  Google Scholar 

  • Qadir M, Steffens D, Yan F, Schubert S (2003) Sodium removal from a calcareous saline-sodic soil through leaching and plant uptake during phytoremediation. Land Degrad Dev 14:301–307

    Article  Google Scholar 

  • Qadir M, Oster JD, Schubert S, Noble AD, Sahrawat KL (2007) Phytoremediation of sodic and saline-sodic soils. Adv Agron 96:197–247

    Article  CAS  Google Scholar 

  • Qadir M, Tubeileh A, Akhtar J, Larbi A, Minhas PS, Khan MA (2008) Productivity enhancement of salt-affected environments through crop diversification. Land Degrad Dev 19:429–453

    Article  Google Scholar 

  • Qadir M, Noble AD, Karajeh F, George B (2015) Potential business opportunities from saline water and salt-affected land resources. Resource recovery and reuse series, vol 5. International Water Management Institute (IWMI). CGIAR Research Program on Water, Land and Ecosystems (WLE), Colombo. https://doi.org/10.5337/2015.206. 29p

    Book  Google Scholar 

  • Qureshi RH, Barrett-Lennard EG (1998) Saline agriculture for irrigated land in Pakistan: a handbook. ACIAR, Canberra

    Google Scholar 

  • Qureshi RH, Nawaz S, Mahmood T (1993) Performance of selected tree species under saline-sodic field conditions in Pakistan. In: Lieth H, Al Masoom A (eds) Towards the rational use of high salinity tolerant plants, vol 1. Kluwer, Dordrecht, pp 259–269

    Chapter  Google Scholar 

  • Richards LA (1954) Diagnosis and improvement of saline and alkali soils. Handbook, vol 60. USDA Agric., Washington, DC

    Google Scholar 

  • Rozema J, Schat H (2013) Salt tolerance of halophytes, research questions reviewed in the perspective of saline agriculture. Environ Exp Bot 92:83–95

    Article  CAS  Google Scholar 

  • Ryan J, Estefan G, Rashid A (2001) Soil and plant analysis laboratory manual. ICARDA, Aleppo

    Google Scholar 

  • Saqib M, Zorb C, Rengel Z, Schubert S (2005) Na+ exclusion and salt resistance of wheat (Triticum aestivum L.) are improved by the expression of endogenous vacuolar Na+/H+ antiporters in roots and shoots. Plant Sci 169:959–965

    Article  CAS  Google Scholar 

  • Saqib M, Akhtar J, Qureshi RH (2008) Sodicity intensifies the effect of salinity on grain yield and yield components of wheat. J Plant Nutr 31:689–701

    Article  CAS  Google Scholar 

  • Saqib M, Akhtar J, Abbas G, Nasim M (2013) Salinity and drought interaction in wheat (Triticum aestivum L.) is affected by the genotype and plant growth stage. Acta Physiol Plant 35:2761–2768

    Article  CAS  Google Scholar 

  • Schachtman DP, Kumar R, Schroeder JI, Marsh EL (1997) Molecular and functional characterization of a novel low-affinity cation transporter (LCTI) in higher plants. Proc Natl Acad Sci 94:11079–11084

    Article  CAS  Google Scholar 

  • Schubert E, Schubert S, Mengel K (1990) Effect of low pH of the root medium on proton release, growth, and nutrient uptake of field beans (Vicia faba). Plant Soil 124:239–244

    Article  CAS  Google Scholar 

  • Seenivasan R, Prasath V, Mohanraj R (2014) Restoration of sodic soils involving chemical and biological amendments and phytoremediation by Eucalyptus camaldulensis in a semiarid region. Environ Geochem Health 37(3):575–586

    Article  Google Scholar 

  • Shirazi MU, Khanzada B, Alam SM, Ansari R, Mujtaba SM, Ali M, Khan MA (2001) Seasonal nutrient variation in two acacia species growing under saline environment. Pak J Biol Sci 4(5):514–517

    Article  Google Scholar 

  • Singh G, Gill HS (1992) Ameliorative effect of tree species on characteristics of sodic soils at Karnal. Indian J Agric Sci 62(2):144–146

    Google Scholar 

  • Singh K, Trivedi P, Singh G, Singh B, Patra DD (2016) Effect of different leaf litters on carbon, nitrogen and microbial activities of sodic soils. Land Degrad Dev 27:1215–1226

    Article  Google Scholar 

  • Tang C, Weligama C, Sale P (2013) subsurface soil acidification: its possible causes and management options, In: Xu JM, Sparks D (eds) Molecular Environmental Soil Science at Critical Zone Interfaces, Springer, Dordrecht, pp 389–412

    Google Scholar 

  • Varshney UK, Raj K (2000) Effect of chloride and sulphate salinity on germination and seedling development of two tropical leguminous tree species. Indian Forester 126(8):856–860

    Google Scholar 

  • Wu Y, Xu G, Shao HB (2014) Furfural and its biochar improve the general properties of a saline soil. Solid Earth 5(2):665–671

    Article  Google Scholar 

  • Zhu JK (2001) Plant soil tolerance. Trends Plant Sci 6:66–71

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Saqib .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Saqib, M., Akhtar, J., Abbas, G., Wahab, H.A. (2019). Saline Agriculture: A Climate Smart Integrated Approach for Climate Change Resilience in Degraded Land Areas. In: Leal Filho, W. (eds) Handbook of Climate Change Resilience. Springer, Cham. https://doi.org/10.1007/978-3-319-71025-9_36-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71025-9_36-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71025-9

  • Online ISBN: 978-3-319-71025-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics