Skip to main content

New Drugs of Abuse and Cardiovascular Function

  • Living reference work entry
  • First Online:
Brain and Heart Dynamics

Abstract

Over the past decade, several new chemical compounds (the so-called NPS, new or novel psychoactive substances) have been synthesized and placed on the abuse market. About a thousand agents are known and monitored by supranational and national agencies because they cause new intoxication, prolonged health adverse effects, and addiction. Synthetic cannabinoids, cathinones, ketamines, new phenethylamines, and other molecules are today readily available at low cost. The high potency of these compounds, the important effects on the cardiovascular and central nervous systems, the still little knowledge about the prolonged health consequences, together with the hope to identify contrastable mechanisms of toxicity, have conquered the scene of the scientific research on substances of abuse in the recent years. Clinically, the cardiotoxicity appears to be similar for the majority of NPS, with the prevalence of sympathomimetic and excitatory cardiovascular signs and symptoms. The mortality in the acute phase of intoxication, however, seems to be related not only to cardiac accidents, but in several cases, also to impairment of several organs/systems (multiorgan failure). The long-term consequences for the cardiovascular system, in addition, are not yet known. More in-depth mechanistic studies, still scarcely available today, will contribute in the future to a better therapeutic approach in the emergency setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. German CL, Fleckenstein AE, Hanson GR. Bath salts and synthetic cathinones: An emerging designer drug phenomenon. Life Sci. 2014;97(1):2–8.

    CAS  PubMed  Google Scholar 

  2. Locatelli CA, Petrolini VM, Giampreti A, Vecchio S, Buscaglia E, Coccini T, Aloise M, Chiara F, Cortini E, Papa P, Serpelloni G. Clinica delle intossicazioni acute da “nuove sostanze psicoattive e tossiche” identificate nel triennio 2010–2013. Ital J Addict. 2014;4(1):28–41.

    Google Scholar 

  3. UNODC Early Warning Advisory (EWA) on New Psychoactive Substances (NPS). United Nation Office on Drugs and Crime. https://www.unodc.org/LSS/Home/NPS. Consulted in 2019.

  4. Buscaglia E, Schicchi A, Lonati D, Calabrò G, Papa P, Valli A, Di Tuccio M, Locatelli CA. An example of a new toxicological disease and a new social problem related to the abuse of and addiction to new psychoactive substances. Clin Toxicol (Phila). 2017;55(5):441.

    Google Scholar 

  5. Hill SL, Thomas SHL. Clinical toxicology of newer recreational drugs. Clin Toxicol. 2011;49(8):705–19.

    CAS  Google Scholar 

  6. Carhart-Harris RL, King LA, Nutt DJ. A web-based survey on mephedrone. Drug Alcohol Depend. 2011;118(1):19–22.

    CAS  PubMed  Google Scholar 

  7. Duflou J. Psychostimulant use disorder and the heart. Addiction. 2020;115(1):175–83.

    PubMed  Google Scholar 

  8. Qureshi Al, Suri MF, Guterman LR, Hopkins LN. Clinical investigation and reports cocaine use and the likelihood of nonfatal myocardial infarction and stroke data from the Third National Health and Nutrition Examination survey. Circulation. 2001;103(4):502–6.

    Google Scholar 

  9. Zwartsen A, de Korte T, Nacken P, de Lange DW, Westerink RHS, Hondebrink L. Cardiotoxicity screening of illicit drugs and new psychoactive substances (NPS) in human iPSC-derived cardiomyocytes using microelectrode array (MEA) recordings. J Mol Cell Cardiol. 2019;136:102–12.

    CAS  PubMed  Google Scholar 

  10. Yun J, Yoon KS, Lee TH, Lee H, Gu SM, Song YJ, Cha HJ, Han KM, Seo H, Shin J, Park HK, Kim HS, Kim YH. Synthetic cannabinoid, JWH-030, induces QT prolongation through hERG channel inhibition. Toxicol Res. 2016;5(6):1663–71.

    CAS  Google Scholar 

  11. EMCDDA-Europol European Monitoring Centre for Drugs and Drug Addiction and Europol. EU Drug Markets Report 2019. Publications Office of the European Union, 2019, Luxembourg.

    Google Scholar 

  12. Monte AA, Calello DP DP, Gerona RR, Hamad E, Campleman SL, Brent J, Wax P, Carlson RG, On behalf of the ACMT Toxicology Investigators Consortium (ToxIC). Characteristics and treatment of patients with clinical illness due to synthetic cannabinoid inhalation reported by Medical Toxicologists: a ToxIC Database Study. J Med Toxicol. 2017;13(2):146–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Monte AA, Bronstein AC, Cao DJ, Heard KJ, Hoppe JA, Hoyte CO, Iwanicki JL, Lavonas EJ. An outbreak of exposure to a novel synthetic cannabinoid. N Engl J Med. 2014;370(4):389–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Adamowicz P. Fatal intoxication with synthetic cannabinoid MDMB-CHMICA. Forensic Sci Int. 2016;261:e5–10.

    CAS  PubMed  Google Scholar 

  15. Auwärter V, Dresen S, Weinmann W, Müller M, Pütz M, Ferreirós N. ‘Spice’ and other herbal blends: harmless incense or cannabinoid designer drugs? J Mass Spectrom. 2009;44(5):832–7.

    PubMed  Google Scholar 

  16. Castaneto MS, Gorelick DA, Desrosiers NA, Hartman RL, Pirard S, Huestis MA. Synthetic cannabinoids: epidemiology, pharmacodynamics, and clinical implications. Drug Alcohol Depend. 2014;144:12–41.

    CAS  PubMed  Google Scholar 

  17. Hohmann N, Mikus G, Czock D. Effects and risks associated with novel psychoactive substances: mislabeling and sale as bath salts, spice, and research chemicals. Dtsch Arztebl Int. 2014;111(9):139–47.

    PubMed  PubMed Central  Google Scholar 

  18. Dresen S, Ferreirós N, Pütz M, Westphal F, Zimmermann R, Auwärter V. Monitoring of herbal mixtures potentially containing synthetic cannabinoids as psychoactive compounds. J Mass Spectrom. 2010;45(10):1186–94.

    CAS  PubMed  Google Scholar 

  19. Kasper AM, Ridpath AD, Gerona RR, Cox R, Galli R, Kyle PB, Parker C, Arnold JK, Chatham-Stephens K, Morrison MA, Olayinka O, Preacely N, Kieszak SM, Martin C, Schier JG, Wolkin A, Byers P, Dobbs T. Severe illness associated with reported use of synthetic cannabinoids: a public health investigation (Mississippi, 2015). Clin Toxicol. 2019;57(1):10–8.

    CAS  Google Scholar 

  20. Huestis MA, Gorelick DA, Heishman SJ, Preston KL, Nelson RA, Moolchan ET, Frank RA. Blockade of effects of smoked marijuana by the CB1-selective cannabinoid receptor antagonist SR141716. Arch Gen Psychiatry. 2001;58(4):322–8.

    CAS  PubMed  Google Scholar 

  21. Brents LK, Reichard EE, Zimmerman SM, Moran JH, Fantegrossi WE, Prather PL. Phase I hydroxylated metabolites of the K2 synthetic cannabinoid JWH-018 retain in vitro and in vivo cannabinoid 1 receptor affinity and activity. PLoS One. 2011;6(7):e21917.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Elsohly MA, Gul W, Wanas AS, Radwan MM. Synthetic cannabinoids: analysis and metabolites. Life Sci. 2014;97(1):78–90.

    CAS  PubMed  Google Scholar 

  23. Fantegrossi WE, Moran JH, Radominska-Pandya A, Prather PL. Distinct pharmacology and metabolism of K2 synthetic cannabinoids compared to Δ(9)-THC: mechanism underlying greater toxicity? Life Sci. 2014;97(1):45–54.

    CAS  PubMed  Google Scholar 

  24. Marshell R, Kearney-Ramos T, Brents LK, Hyatt WS, Tai S, Prather PL, Fantegrossi WE. In vivo effects of synthetic cannabinoids JWH-018 and JWH-073 and phytocannabinoid Δ9-THC in mice: inhalation versus intraperitoneal injection. Pharmacol Biochem Behav. 2014;124:40–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Locatelli CA, Vecchio S, Giampreti A, Buscaglia E, Schicchi A, Grignani P, Serpelloni G. Acute intoxications by synthetic cannabinoids in the emergency system: an Italian cases series. Clin Toxicol. 2015;53:360.

    Google Scholar 

  26. Lonati D, Buscaglia E, Papa P, Valli A, Coccini T, Giampreti A, Petrolini VM, Vecchio S, Serpelloni G, Locatelli CA. MAM-2201 (Analytically confirmed) intoxication after “Synthacaine” consumption. Ann Emerg Med. 2014;64(6):629–32.

    PubMed  Google Scholar 

  27. Trecki J, Gerona RR, Schwartz MD. Synthetic cannabinoid–related illnesses and deaths. NEJM. 2015;373(2):103–7.

    CAS  PubMed  Google Scholar 

  28. Winstock AR, Barratt MJ. The 12-month prevalence and nature of adverse experiences resulting in emergency medical presentations associated with the use of synthetic cannabinoid products. Hum Psychopharmacol. 2013b;28(4):390–3.

    PubMed  Google Scholar 

  29. Zaurova M, Hoffman RS, Vlahov D, Manini AF. Clinical effects of synthetic cannabinoid receptor agonists compared with marijuana in emergency department patients with acute drug overdose. J Med Toxicol. 2016;12(4):335–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Harris CR, Brown A. Synthetic cannabinoid intoxication: a case series and review. J Emerg Med. 2013;44(2):360–6.

    PubMed  Google Scholar 

  31. Tait RJ, Caldicott D, Mountain D, Hill SL, Lenton S. A systematic review of adverse events arising from the use of synthetic cannabinoids and their associated treatment. Clin Toxicol (Phila). 2016;54(1):1–13.

    CAS  Google Scholar 

  32. Moeller S, Lücke C, Struffert T, Schwarze B, Gerner ST, Schwab S, Köhrmann M, Machold K, Philipsen A, Müller HH. Ischemic stroke associated with the use of a synthetic cannabinoid (spice). Asian J Psychiatr. 2017;25:127–30.

    PubMed  Google Scholar 

  33. Yamanoglu A, Celebi Yamanoglu NG, Evran T, Sogut O. How much can synthetic cannabinoid damage the heart? A case of cardiogenic shock following resistant ventricular fibrillation after synthetic cannabinoid use. J Clin Ultrasound. 2018;46(9):605–9.

    PubMed  Google Scholar 

  34. Lonati D, Buscaglia E, Papa P, Petrolini V, Vecchio S, Giampreti A, Rocchi L, Chiara F, Aloise M, Rognoni C, Manzo L, Serpelloni G, Rimondo C, Macchia T, Locatelli CA. Prevalence of intoxication by new recreational drugs: preliminary data by the Italian network of emergency departments involved in the national early identification system. Clin Toxicol. 2012;50:344.

    Google Scholar 

  35. Besli GE, Ikiz MA, Yildirim S, Saltik S. Synthetic cannabinoid abuse in adolescents: a case series. J Emerg Med. 2015;49(5):644–50.

    PubMed  Google Scholar 

  36. Hermanns-Clausen M, Kneisel S, Szabo B, Auwärter V. Acute toxicity due to the confirmed consumption of synthetic cannabinoids: clinical and laboratory findings. Addiction. 2013;108(3):534–44.

    PubMed  Google Scholar 

  37. Angerer V, Jacobi S, Franz F, Auwärter V, Pietsch J. Three fatalities associated with the synthetic cannabinoids 5F-ADB, 5F-PB-22, and AB-CHMINACA. Forensic Sci Int. 2017;281:e9–e15.

    CAS  PubMed  Google Scholar 

  38. Ivanov ID, Stoykova S, Ivanova E, Vlahova A, Burdzhiev N, Pantcheva I, Atanasov VN. A case of 5F-ADB/FUB-AMB abuse: drug-induced or drug-related death? Forensic Sci Int. 2019;297:372–7.

    CAS  PubMed  Google Scholar 

  39. Bilel S, Tirri M, Arfè R, Stopponi S, Soverchia L, Ciccocioppo R, Frisoni P, Strano-Rossi S, Miliano C, De-Giorgio F, Serpelloni G, Fantinati A, De Luca MA, Neri M, Marti M. Pharmacological and behavioral effects of the synthetic cannabinoid AKB48 in rats. Front Neurosci. 2019;13:1163.

    PubMed  PubMed Central  Google Scholar 

  40. Banister SD, Moir M, Stuart J, Kevin RC, Wood KE, Longworth M, Wilkinson SM, Beinat C, Buchanan AS, Glass M, Connor M, McGregor IS, Kassiou M. Pharmacology of indole and indazole synthetic cannabinoid designer drugs AB-FUBINACA, ADB-FUBINACA, AB-PINACA, ADB-PINACA, 5F-AB-PINACA, 5F-ADB-PINACA, ADBICA, and 5F-ADBICA. ACS Chem Neurosci. 2015;6(9):1546–59.

    CAS  PubMed  Google Scholar 

  41. McIlroy G, Ford L, Khan JM. Acute myocardial infarction, associated with the use of a synthetic adamantyl-cannabinoid: a case report. BMC Pharmacol Toxicol. 2016;17:2.

    PubMed  PubMed Central  Google Scholar 

  42. Hamilton RJ, Keyfes V, Banka SS. Synthetic cannabinoid abuse resulting in ST-segment elevation myocardial infarction requiring percutaneous coronary intervention. J Emerg Med. 2017;52(4):496–8.

    PubMed  Google Scholar 

  43. Clark BC, Georgekutty J, Berul CI. Myocardial ischemia secondary to synthetic cannabinoid (K2) use in pediatric patients. J Pediatr. 2015;167(3):757–61.e1.

    PubMed  Google Scholar 

  44. Mir A, Obafemi A, Young A, Kane C. Myocardial infarction associated with use of the synthetic cannabinoid K2. Pediatrics. 2011;128(6):e1622–7.

    PubMed  Google Scholar 

  45. Young AC, Schwarz E, Medina G, Obafemi A, Feng SY, Kane C, Kleinschmidt K. Cardiotoxicity associated with the synthetic cannabinoid, K9, with laboratory confirmation. Am J Emerg Med. 2012;30(7):1320.e5–7.

    Google Scholar 

  46. Bachs L, Mørland H. Acute cardiovascular fatalities following cannabis use. Forensic Sci Int. 2001;124(2–3):200–3.

    CAS  PubMed  Google Scholar 

  47. Kocabay G, Yildiz M, Duran N, Ozkan M. Acute inferior myocardial infarction due to cannabis smoking in a young man. J Cardiovasc Med. 2009;10(9):669–70.

    Google Scholar 

  48. Woodward G, Selbst S. Chest pain secondary to cocaine use. Pediatr Emerg Care. 1987;3(3):153–4.

    CAS  PubMed  Google Scholar 

  49. Mittleman MA, Lewis RA, Maclure M, Sherwood JB, Muller JE. Triggering myocardial infarction by marijuana. Circulation. 2001;103(23):2805–9.

    CAS  PubMed  Google Scholar 

  50. Charles R, Holt S, Kirkham N. Myocardial infarction and marijuana. Clin Toxicol. 1979;14(4):433–8.

    CAS  PubMed  Google Scholar 

  51. Gash A, Karliner JS, Janowsky D, Lake CR. Effects of smoking marijuana on left ventricular performance and plasma norepinephrine: studies in normal men. Ann Intern Med. 1978;89(4):448–52.

    CAS  PubMed  Google Scholar 

  52. Weiss JL, Watanabe AM, Lemberger L, Tamarkin NR, Cardon PV. Cardiovascular effects of delta-9-tetrahydrocannabinol in man. Clin Pharmacol Ther. 1972;13(5):671–84.

    CAS  PubMed  Google Scholar 

  53. Aryana A, Williams MA. Marijuana as a trigger of cardiovascular events: speculation or scientific certainty? Int J Cardiol. 2007;118(2):141–4.

    PubMed  Google Scholar 

  54. Mukamal KJ, Maclure M, Muller JE, Mittleman MA. An exploratory prospective study of marijuana use and mortality after acute myocardial infarction. Am Heart J. 2008;155(3):465–70.

    PubMed  PubMed Central  Google Scholar 

  55. Ghuran A, Nolan J. Recreational drug misuse: issues for the cardiologist. Heart. 2000;83:627–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Anzillotti L, Marezza F, Calò L, Banchini A, Cecchi R. A case report positive for synthetic cannabinoids: are cardiovascular effects related to their protracted use? Legal Med. 2019;41:101637.

    CAS  PubMed  Google Scholar 

  57. Barnes D, Palace J, O’Brien MD. Stroke following marijuana smoking. Stroke. 1992;23(9):1381.

    CAS  PubMed  Google Scholar 

  58. Freeman MJ, Rose DZ, Myers MA, Gooch CL, Bozeman AC, Burgin WS. Ischemic stroke after use of the synthetic marijuana “spice”. Neurology. 2013;81(24):2090–3.

    PubMed  PubMed Central  Google Scholar 

  59. Lawson TM, Rees A. Stroke and transient ischaemic attacks in association with substance abuse in a young man. Postgrad Med J. 1996;72(853):692–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Bernson-Leung ME, Leung LY, Kumar S. Synthetic cannabis and acute ischemic stroke. J Stroke Cerebrovasc Dis. 2014;23(5):1239–41.

    PubMed  Google Scholar 

  61. Wolff V, Jouanjus E. Strokes are possible complications of cannabinoids use. Epilepsy Behav. 2017;70(Pt B):355–63.

    PubMed  Google Scholar 

  62. Raheemullah A, Laurence TN. Repeated thrombosis after synthetic cannabinoid use. J Emerg Med. 2016;51(5):540–3.

    PubMed  Google Scholar 

  63. Weinstein AM, Rosca P, Fattore L, London ED. Synthetic cathinone and cannabinoid designer drugs pose a major risk for public health. Front Psych. 2017;8:156.

    Google Scholar 

  64. Müller H, Sperling W, Köhrmann M, Huttner HB, Kornhuber J, Maler JM. The synthetic cannabinoid spice as a trigger for an acute exacerbation of cannabis induced recurrent psychotic episodes. Schizophr Res. 2010;118(1–3):309–10.

    PubMed  Google Scholar 

  65. Zullino DF, Rathelot T, Khazaal Y. Cannabis and psychosis. Lancet. 2007;370(9598):1540.

    PubMed  Google Scholar 

  66. Fantegrossi WE, Wilson CD, Berquist MD III. Pro-psychotic effects of synthetic cannabinoids: interactions with central dopamine, serotonin and glutamate systems. Drug Metab Rev. 2018;50(1):65–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Adams AJ, Banister SD, Irizarry L, Trecki J, Schwartz M, Gerona R. “Zombie” outbreak caused by the synthetic cannabinoid AMB-FUBINACA in New York. N Engl J Med. 2017;376(3):235–42.

    CAS  PubMed  Google Scholar 

  68. Hermanns-Clausen M, Müller D, Kithinji J, Angerer V, Franz F, Eyer F, Neurath H, Liebetrau G, Auwärter V. Acute side effects after consumption of the new synthetic cannabinoids AB-CHMINACA and MDMB-CHMICA. Clin Toxicol (Phila). 2018;56(6):404–11.

    CAS  Google Scholar 

  69. Schifano F, Albanese A, Fergus S, Stair JL, Deluca P, Corazza O, Davey Z, Corkery J, Siemann H, Scherbaum N, Farre M, Torrens M, Demetrovics Z, Ghodse AH, Psychonaut Web Mapping, ReDNet Research Groups. Mephedrone (4-methylmethcathinone; ‘meow meow’): chemical, pharmacological and clinical issues. Psychopharmacology. 2011;214(3):593–602.

    CAS  PubMed  Google Scholar 

  70. Gregg RA, Rawls SM. Behavioral pharmacology of designer cathinones: a review of the preclinical literature. Life Sci. 2014;97(1):27–30.

    CAS  PubMed  Google Scholar 

  71. Tyrkkö E, Andersson M, Kronstrand R. The toxicology of new psychoactive substances: synthetic Cathinones and Phenylethylamines. Ther Drug Monit. 2016;38(2):190–216.

    PubMed  Google Scholar 

  72. Simmler LD, Buser TA, Donzelli M, Schramm Y, Dieu LH, Huwyler J, Chaboz S, Hoener MC, Liechti ME. Pharmacological characterization of designer cathinones in vitro. Br J Pharmacol. 2013;168(2):458–70.

    CAS  PubMed  Google Scholar 

  73. Simmler LD, Rickli A, Hoener MC, Liechti ME. Monoamine transporter and receptor interaction profiles of a new series of designer cathinones. Neuropharmacology. 2014;79:152–60.

    CAS  PubMed  Google Scholar 

  74. Prosser JM, Nelson LS. The toxicology of bath salts: a review of synthetic cathinones. J Med Toxicol. 2012;8(1):33–42.

    PubMed  Google Scholar 

  75. Baumann MH, Partilla JS, Lehner KR. Psychoactive “bath salts”: not so soothing. Eur J Pharmacol. 2013;698(1–3):1–5.

    CAS  PubMed  Google Scholar 

  76. Valente MJ, Guedes de Pinho P, de Lourdes Bastos M, Carvalho F, Carvalho M. Khat and synthetic cathinones: a review. Arch Toxicol. 2014;88(1):15–45.

    CAS  PubMed  Google Scholar 

  77. Locatelli CA, Buscaglia E, Scaravaggi G, Schicchi A, Papa P, Lonati D. Trends in synthetic cathinone use in poisoned patients in Italy from the National Alert System observatory. Clin Toxicol. 2019;57(6):431.

    Google Scholar 

  78. Fujita Y, Koeda A, Fujino Y, Onodera M, Kikuchi S, Niitsu H, Iwasaki Y, Usui K, Inoue Y. Clinical and toxicological findings of acute intoxication with synthetic cannabinoids and cathinones. Acute Med Surg. 2015;3(3):230–6.

    PubMed  PubMed Central  Google Scholar 

  79. Ezaki J, Ro A, Hasegawa M, Kibayashi K. Fatal overdose from synthetic cannabinoids and cathinones in Japan: demographics and autopsy findings. Am J Drug Alcohol Abuse. 2016;42(5):520–9.

    PubMed  Google Scholar 

  80. Kovács K, Kereszty É, Berkecz R, Tiszlavicz L, Sija É, Körmöczi T, Jenei N, Révész-Schmehl H, Institóris L. Fatal intoxication of a regular drug user following N-ethyl-hexedrone and ADB-FUBINACA consumption. J Forensic Legal Med. 2019;65:92–100.

    Google Scholar 

  81. Nagasawa S, Saitoh H, Kasahara S, Chiba F, Torimitsu S, Abe H, Yajima D, Iwase H. Relationship between KCNQ1 (LQT1) and KCNH2 (LQT2) gene mutations and sudden death during illegal drug use. Sci Rep. 2018;8(1):8443.

    PubMed  PubMed Central  Google Scholar 

  82. Movahed MR, Mostafizi K. Reverse or inverted left ventricular apical ballooning syndrome (reverse takotsubo cardiomyopathy) in a young woman in the setting of amphetamine use. Echocardiography. 2008;25:429–32.

    PubMed  Google Scholar 

  83. Alsidawi S, Muth J, Wilkin J. Adderall induced inverted-takotsubo cardiomyopathy. Catheter Cardiovasc Interv. 2011;78:910–3.

    PubMed  Google Scholar 

  84. Sivagnanam K, Chaudari D, Lopez P, Sutherland ME, Ramu VK. “Bath salts” induced induced severe reversible cardiomyopathy. Am J Case Rep. 2013;14:288–91.

    PubMed  PubMed Central  Google Scholar 

  85. Roda E, Lonati D, Buscaglia E, Papa P, Rocchi L, Locatelli CA, Coccini T. Evaluation of two different screening ELISA assays for synthetic cathinones (Mephedrone/Methcathinone and MDPV) with LC-MS method in intoxicated patients. Clin Toxicol. 2016;6:3.

    Google Scholar 

  86. Lippmann M, Appel PL, Mok MS, Shoemaker WC. Sequential cardiorespiratory patterns of anesthetic induction with ketamine in critically ill patients. Crit Care Med. 1983;11:730–4.

    CAS  PubMed  Google Scholar 

  87. Spotoft H, Korshin JD, Sørensen MB, Skovsted P. The cardiovascular effects of ketamine used for induction of anaesthesia in patients with valvular heart disease. Can Anaesth Soc J. 1979;26(6):463–7.

    CAS  PubMed  Google Scholar 

  88. Chan WM, Xu J, Fan M, Jiang Y, Tsui TY, Wai MS, Lam WP, Yew DT. Downregulation in the human and mice cerebella after ketamine versus ketamine plus ethanol treatment. Microsc Res Tech. 2012;75(3):258–64.

    CAS  PubMed  Google Scholar 

  89. Ossato A, Bilel S, Gregori A, Talarico A, Trapella C, Gaudio RM, De-Giorgio F, Tagliaro F, Neri M, Fattore L, Marti M. Neurological, sensorimotor and cardiorespiratory alterations induced by methoxetamine, ketamine and phencyclidine in mice. Neuropharmacology. 2018;141:167–80.

    CAS  PubMed  Google Scholar 

  90. Zarantonello P, Bettini E, Paio A, Simoncelli C, Terreni S, Cardullo F. Novel analogues of ketamine and phencyclidine as NMDA receptor antagonists. Bioorg Med Chem Lett. 2011;21:2059–63.

    CAS  PubMed  Google Scholar 

  91. Hondebrink L, Kasteel EEJ, Tukker AM, Wijnolts FMJ, Verboven AHA, Westerink RHS. Neuropharmacological characterization of the new psychoactive substance methoxetamine. Neuropharmacology. 2017;123:1–9.

    CAS  PubMed  Google Scholar 

  92. Kalsi SS, Wood DM, Dargan PI. The epidemiology and patterns of acute and chronic toxicity associated with recreational ketamine use. Emerg Health Threats J. 2011;4:7107.

    PubMed  Google Scholar 

  93. Wiergowski M, Anand JS, Krzyżanowski M, Jankowski Z. Acute methoxetamine and amphetamine poisoning with fatal outcome: a case report. Int J Occup Med Environ Health. 2014;27:683–90.

    PubMed  Google Scholar 

  94. Imbert L, Boucher A, Delhome G, Cueto T, Boudinaud M, Maublanc J, Dulaurent S, Descotes J, Lachâtre G, Gaulier JM. Analytical findings of an acute intoxication after inhalation of methoxetamine. J Anal Toxicol. 2014;38:410–5.

    CAS  PubMed  Google Scholar 

  95. Zawilska JB. Methoxetamine–a novel recreational drug with potent hallucinogenic properties. Toxicol Lett. 2014;230:402–7.

    CAS  PubMed  Google Scholar 

  96. Adamowicz P, Zuba D. Fatal intoxication with methoxetamine. J Forensic Sci. 2015;60:264–8.

    Google Scholar 

  97. Łukasik-Głebocka M, Sommerfeld K, Tezyk A, Zielińska-Psuja B, Druzdz A. Acute methoxetamine intoxication–a case report with serum and urine concentrations. Przegl Lek. 2013;70:671–3.

    PubMed  Google Scholar 

  98. Thornton S, Lisbon D, Lin T, Gerona R. Beyond ketamine and phencyclidine: analytically confirmed use of multiple novel arylcyclohexylamines. J Psychoactive Drugs. 2017;49:289–93.

    PubMed  Google Scholar 

  99. Weiner AL, Vieira L, McKay CA, Bayer MJ. Ketamine abusers presenting to the emergency department: a case series. J Emerg Med. 2000;18(4):447–51.

    CAS  PubMed  Google Scholar 

  100. Morgan HL, Turner D, Corlett PR, Corlett PR, Absalom AR, Adapa R, Arana FS, Pigott J, Gardner J, Everitt J, Haggard P, Fletcher PC. Exploring the impact of ketamine on the experience of illusory body ownership. Biol Psychiatry. 2011;69(1):35–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Bäckberg M, Beck O, Helander A. Phencyclidine analog use in Sweden–intoxication cases involving 3-MeO-PCP and 4-MeO-PCP from the STRIDA project. Clin Toxicol. 2015;53:856–64.

    Google Scholar 

  102. Iversen L, White M, Treble R. Designer psychostimulants: pharmacology and differences. Neuropharmacology. 2014;87:59–65.

    CAS  PubMed  Google Scholar 

  103. Mladěnka P, Applová L, Patočka J, Costa VM, Remiao F, Pourová J, Mladěnka A, Karlíčková J, Jahodář L, Vopršalová M, Varner KJ, Štěrba M, TOX-OER and CARDIOTOX Hradec Králové Researchers and Collaborators. Comprehensive review of cardiovascular toxicity of drugs and related agents. Med Res Rev. 2018;38(4):1332–403.

    PubMed  PubMed Central  Google Scholar 

  104. Holden R, Jackson MA. Near-fatal hyponatraemic coma due to vasopressin over-secretion after “ecstasy” (3,4-MDMA). Lancet. 1996;347(9007):1052.

    CAS  PubMed  Google Scholar 

  105. Hartung TK, Schofield E, Short AI, Parr MJ, Henry JA. Hyponatraemic states following 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’) ingestion. QJM. 2002;95(7):431–7.

    CAS  PubMed  Google Scholar 

  106. Locatelli CA, Buscaglia E, Vecchio S, Prevaldi C, Scaravaggi G, Papa P, Lonati D, Coccini T. Clinical features of paramethoxymethamphetamine (PMMA) poisoning in lethal and non-lethal cases. Clin Toxicol. 2016;54(4):406–7.

    Google Scholar 

  107. Vevelstad M, Øiestad EL, Middelkoop G, Hasvold I, Lilleng P, Delaveris GJ, Eggen T, Mørland J, Arnestad M. The PMMA epidemic in Norway: comparison of fatal and non-fatal intoxications. Forensic Sci Int. 2012;219(1–3):151–7.

    CAS  PubMed  Google Scholar 

  108. Al-Samarraie MS, Vevelstad M, Nygaard IL, Bachs L, Mørland J. Intoxation with paramethoxymethamphetamine. Tidsskr Nor Laegeforen. 2013;133(9):966–9.

    PubMed  Google Scholar 

  109. Ptaszyńska-Sarosiek I, Wardaszka Z, Sackiewicz A, Okłota M, Niemcunowicz-Janica A. Cases of fatal para methoxy amphetamine (PMA) poisoning in the material of the Forensic Medicine Department, Medical University of Białystok, Poland. Arch Med Sadowej Kryminol. 2009;59(3):190–3.

    PubMed  Google Scholar 

  110. Ling LH, Marchant C, Buckley NA, Prior M, Irvine RJ. Poisoning with the recreational drug paramethoxyamphetamine (“death”). Med J Aust. 2001;174(9):453–5.

    CAS  PubMed  Google Scholar 

  111. Richards JR, Derlet RW, Albertson TE, Horowitz BZ, Lange RA. Methamphetamine, “Bath Salts,” and other amphetamine-related derivatives: progressive treatment update. Enliven: Toxicol Allied Clin Pharmacol. 2014;1(1):001.

    Google Scholar 

  112. Hondebrink L, Nugteren-van Lonkhuyzen JJ, Rietjens SJ, Brunt TM, Venhuis B, Soerdjbalie-Maikoe V, Smink BE, van Riel AJHP, de Vries I. Fatalities, cerebral hemorrhage, and severe cardiovascular toxicity after exposure to the new psychoactive substance 4-fluoroamphetamine: a prospective cohort study. Ann Emerg Med. 2018;71(3):294–305.

    PubMed  Google Scholar 

  113. Wikström M, Holmgren P, Ahlner J. A2 (N-benzylpiperazine) a new drug of abuse in Sweden. J Anal Toxicol. 2004;28:67–70.

    PubMed  Google Scholar 

  114. Monteiro MS, Bastos Mde L, Guedes de Pinho P, Carvalho M. Update on 1-benzylpiperazine (BZP) party pills. Arch Toxicol. 2013;87(6):929–47.

    CAS  PubMed  Google Scholar 

  115. Schep LJ, Slaughter RJ, Vale JA, Beasley DM, Gee P. The clinical toxicology of the designer “party pills” benzylpiperazine and trifluoromethylphenylpiperazine. Clin Toxicol. 2011;49(3):131–41.

    CAS  Google Scholar 

  116. Gee P, Gilbert M, Richardson S, Moore G, Paterson S, Graham P. Toxicity from the recreational use of 1-benzylpiperazine. Clin Toxicol. 2008;46(9):802–7.

    CAS  Google Scholar 

  117. Briner K, Burkhart JP, Burkholder TM, et al. Aminoalkylbenzofurans as serotonin (5-HT(2C)) agonists. US Patent 7045545 B1 to Eli Lilly and Co., 16 May 2006.

    Google Scholar 

  118. Chambers JJ, Kurrasch-Orbaugh DM, Parker MA, Nichols DE. Enantiospecific synthesis and pharmacological evaluation of a series of super-potent, conformationally restricted 5-HT(2A/2C) receptor agonists. J Med Chem. 2001;44(6):1003–10.

    CAS  PubMed  Google Scholar 

  119. Locatelli CA, Lonati D, Buscaglia E, Vecchio S, Giampreti A, Petrolini VM, Chiara F, Aloise M, Corsini E, Papa P, Valli A, Andreoni L, Rimondo C, Seri C, Serpelloni G. “Benzofury” poisoning that mimics meningoecephalitis/septicemia. Clin Toxicol. 2013;51:286–7.

    Google Scholar 

  120. Personne M, Hulten P. Bromo-dragonfly: a life-threatening designer drug. Clin Tox. 2008;46:379–80.

    Google Scholar 

  121. Thorlacius K, Borna C, Personne M. Bromo-dragonfly – life-threatening drug. Can cause tissue necrosis as demonstrated by the first described case. Lakartidningen. 2008;105(16):1199–200.

    PubMed  Google Scholar 

  122. Andreasen MF, Telving R, Birkler RI, Schumacher B, Johannsen M. A fatal poisoning involving Bromo-Dragonfly. Forensic Sci Int. 2009;183(1–3):91–6.

    CAS  PubMed  Google Scholar 

  123. Villalobos CA, Bull P, Sáez P, Cassels BK, Huidobro-Toro JP. 4-Bromo-2,5-imethoxyphenethylamine (2C-B) and structurally related phenylethylamines are potent 5-HT2A receptor antagonists in Xenopus laevis oocytes. Br J Pharmacol. 2004;141(7):1167–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Nagai F, Nonaka R, Satoh Hisashi Kamimura K. The effects of nonmedically used psychoactive drugs on monoamine neurotransmission in rat brain. Eur J Pharmacol. 2007;559(2–3):132–7.

    CAS  PubMed  Google Scholar 

  125. Sanders B, Lankenau SE, Bloom JJ, Hathazi D. “Research chemicals”: tryptamine and phenethylamine use among high-risk youth. Subst Use Misuse. 2008;43(3–4):389–402.

    PubMed  PubMed Central  Google Scholar 

  126. Johnson MP, Huang XM, Oberlender R, Nash JF, Nichols DE. Behavioral, biochemical and neurotoxicological actions of the alpha-ethyl homologue of p-chloroamphetamine. Eur J Pharmacol. 1990;191(1):1–10.

    CAS  PubMed  Google Scholar 

  127. Papaseit E, Farré M, Pérez-Mañá C, Torrens M, Ventura M, Pujadas M, de la Torre R, González D. Acute pharmacological effects of 2C-B in humans: an observational study. Front Pharmacol. 2018;9:206.

    PubMed  PubMed Central  Google Scholar 

  128. Miyajima M, Matsumoto T, Ito S. 2C-T-4 intoxication: acute psychosis caused by a designer drug. Psychiatry Clin Neurosci. 2008;62(2):243.

    PubMed  Google Scholar 

  129. Huang HH, Bai YM. Persistent psychosis after ingestion of a single tablet of ‘2C-B’. Prog Neuro-Psychopharmacol Biol Psychiatry. 2011;35(1):293–4.

    Google Scholar 

  130. Vilke GM, DeBard ML, Chan TC, Ho JD, Dawes DM, Hall C, Curtis MD, Costello MW, Mash DC, Coffman SR, McMullen MJ, Metzger JC, Roberts JR, Sztajnkrcer MD, Henderson SO, Adler J, Czarnecki F, Heck J, Bozeman WP. Excited Delirium Syndrome (ExDS): defining based on a review of the literature. J Emerg Med. 2012;43(5):897–905.

    PubMed  Google Scholar 

  131. Sacks J, Ray MJ, Williams S, Opatowsky MJ. Fatal toxic leukoencephalopathy secondary to overdose of a new psychoactive designer drug 2C-E (“Europa”). Proc (Bayl Univ Med Cent). 2012;25(4):374–6.

    Google Scholar 

  132. Topeff JM, Ellsworth H, Willhite LA, Bangh SA, Edwards EM, Cole JB. A case series of symptomatic patients, including one fatality, following 2C-E exposure. Clin Toxicol. 2011;49:526.

    Google Scholar 

  133. Locatelli CA, Lonati D, Giampreti A, Petrolini VM, Papa P, Buscaglia E, Roda E, Coccini T. Clinical features of intoxication with 2C-series phenethylamines. Clin Toxicol. 2016b;54(4):407.

    Google Scholar 

  134. Bosak A, LoVecchio F, Levine M. Recurrent seizures and serotonin syndrome following “2C-I” ingestion. J Med Toxicol. 2013;9(2):196–8.

    PubMed  PubMed Central  Google Scholar 

  135. Cheng HC, Long JP, Nichols DE, Barfknecht CF. Effects of psychotomimetics on vascular strips: studies of methoxylated amphetamines and optical isomers of 2,5-dimethoxy-4-methylamphetamine and 2,5-dimethoxy-4-bromoamphetamine. J Pharmacol Exp Ther. 1974;188(1):114–23.

    CAS  PubMed  Google Scholar 

  136. Rusterholz DB, Spratt JL, Long JP, Kelly TF. Serotonergic and dopaminergic involvement in the mechanism of action of R-(-)-2,5-dimethoxy-4-bromoamphetamine (DOB) in cats. Life Sci. 1978;23(14):1499–506.

    CAS  PubMed  Google Scholar 

  137. Bowen JS, Davis GB, Kearney TE, Bardin J. Diffuse vascular spasm associated with 4-bromo-2,5-dimethoxyamphetamine ingestion. JAMA. 1983;249(11):1477–9.

    CAS  PubMed  Google Scholar 

  138. Ovaska H, Viljoen A, Puchnarewicz M, Button J, Ramsey J, Holt DW, Dargan PI, Wood DM. First case report of recreational use of 2,5-dimethoxy-4-chloroamphetamine confirmed by toxicological screening. Eur J Emerg Med. 2008;15(6):354–6.

    PubMed  Google Scholar 

  139. Morini L, Bernini M, Vezzoli S, Restori M, Moretti M, Crenna S, Papa P, Locatelli C, Osculati AMM, Vignali C, Groppi A. Death after 25C-NBOMe and 25H-NBOMe consumption. Forensic Sci Int. 2017;279:e1–6.

    CAS  PubMed  Google Scholar 

  140. Fantegrossi WE, Murnane KS, Reissig CJ. The behavioral pharmacology of hallucinogens. Biochem Pharmacol. 2008;75(1):17–33.

    CAS  PubMed  Google Scholar 

  141. Cozzi NV, Gopalakrishnan A, Anderson LL, Feih JT, Shulgin AT, Daley PF, Ruoho AE. Dimethyltryptamine and other hallucinogenic tryptamines exhibit substrate behavior at the serotonin uptake transporter and the vesicle monoamine transporter. J Neural Transm (Vienna). 2009;116(12):1591–9.

    CAS  Google Scholar 

  142. Fontanilla D, Johannessen M, Hajipour AR, Cozzi NV, Jackson MB, Ruoho AE. The hallucinogen N,N-dimethyltryptamine (DMT) is an endogenous sigma-1 receptor regulator. Science. 2009;323(5916):934–7. https://doi.org/10.1126/science.1166127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Sogawa C, Sogawa N, Tagawa J, Fujino A, Ohyama K, Asanuma M, Funada M, Kitayama S. 5-Methoxy-N,N-diisopropyltryptamine (Foxy), a selective and high affinity inhibitor of serotonin transporter. Toxicol Lett. 2007;170(1):75–82. Epub 2007 Feb 21

    CAS  PubMed  Google Scholar 

  144. Araújo AM, Carvalho F, Bastos Mde L, Guedes de Pinho P, Carvalho M. The hallucinogenic world of tryptamines: an updated review. Arch Toxicol. 2015;89(8):1151–73.

    PubMed  Google Scholar 

  145. Schifano F, Orsolini L, Duccio Papanti G, Corkery JM. Novel psychoactive substances of interest for psychiatry. World Psychiatry. 2015;14(1):15–26. https://doi.org/10.1002/wps.20174.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Yoon KS, Lee JM, Kim YH, Suh SK, Cha HJ. Cardiotoxic effects of [3-[2-(diethylamino)ethyl]-1H-indol-4-yl] acetate and 3-[2-[ethyl(methyl)amino]ethyl]-1H-indol-4-ol. Toxicol Lett. 2020;319:40–8.

    CAS  PubMed  Google Scholar 

  147. Strassman RJ, Qualls CR. Dose-response study of N,N-dimethyltryptamine in humans. I. Neuroendocrine, autonomic, and cardiovascular effects. Arch Gen Psychiatry. 1994;51(2):85–97.

    CAS  PubMed  Google Scholar 

  148. Garbelli E, Petrolini VM, Coccini T, Vecchio S, Papa P, Lonati D, Locatelli CA. Hyperthermia in sympathomimetic/serotonergic substance of abuse poisoning: a case series. Clin Toxicol. 2018;56(6):470.

    Google Scholar 

  149. Grunau BE, Wiens MO, Brubacher JR. Dantrolene in the treatment of MDMA-related hyperpyrexia: a systematic review. CJEM. 2010;12:435–42.

    PubMed  Google Scholar 

  150. Hysek C, Schmid Y, Rickli A, Simmler LD, Donzelli M, et al. Carvedilol inhibits the cardiostimulant and thermogenic effects of MDMA in humans. Br J Pharmacol. 2012;166:2277–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Sprague JE, Moze P, Caden D, Rusyniak DE, Holmes C, Goldstein DS, Mills EM. Carvedilol reverses hyperthermia and attenuates rhabdomyolysis induced by 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) in an animal model. Crit Care Med. 2005;33(6):1311–6.

    CAS  PubMed  Google Scholar 

  152. Hoskins MH, Leleiko RM, Ramos JJ, Sola S, Caneer PM, Khan BV. Effects of labetalol on hemodynamic parameters and soluble biomarkers of inflammation in acute coronary syndrome in patients with active cocaine use. J Cardiovasc Pharmacol Ther. 2010;15(1):47–52.

    CAS  PubMed  Google Scholar 

  153. Valli A, Lonati D, Locatelli CA, Buscaglia E, Di Tuccio M, Papa P. Analytically diagnosed intoxication by 2-methoxphenidine and flubromazepam mimicking an ischemic cerebral disease. Clin Toxicol. 2017;55(6):611–2. https://doi.org/10.1080/15563650.2017.1286016. Epub 2017 Feb 8.

Download references

Acknowledgments

Italian clinical data reported in this chapter come from the activity of the Pavia Poison Centre as clinical and toxicological coordinating center for the Italian National Early Warning System for Drugs of Abuse (Department of Antidrug Policies – Presidency of the Council of Ministers) and are in part supported by the Ricerca Corrente funding of the Italian Ministry of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Alessandro Locatelli .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Locatelli, C.A., Lonati, D., Petrolini, V.M. (2020). New Drugs of Abuse and Cardiovascular Function. In: Govoni, S., Politi, P., Vanoli, E. (eds) Brain and Heart Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-319-90305-7_55-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90305-7_55-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90305-7

  • Online ISBN: 978-3-319-90305-7

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics