Skip to main content

Evolution of the Diencephalon

  • Reference work entry
  • First Online:
Encyclopedia of Neuroscience

Definition

The diencephalon is the more caudal of the two divisions of the forebrain. It lies between the more rostral division of the forebrain, the telencephalon, and the rostral end of the midbrain. The diencephalon comprises four divisions in its major, rostral part – the epithalamus, dorsal thalamus, ventral thalamus (or subthalamus), and hypothalamus – as well as the more caudally lying pretectum and, in some vertebrates, the posterior tuberculum.

Characteristics

The diencephalon varies substantially in the degree of elaboration of its various components – epithalamus, dorsal thalamus, ventral thalamus, hypothalamus, pretectum, and the migrated nuclei of the posterior tuberculum – across vertebrates. The hypothalamus, pretectum, and posterior tubercular nuclei are arguably most complex in most taxa of ray-finned fishes, while the dorsal thalamus and ventral thalamus are most elaborated in amniotes. The more dorsal part of the epithalamus is also quite variable, while its...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Butler AB, Hodos W (2005) Comparative vertebrate neuroanatomy: evolution and adaptation. Wiley-Liss, Hoboken, NJ

    Book  Google Scholar 

  2. Nieuwenhuys R, ten Donkehaar HJ, Nicholson C (1998) The central nervous system of vertebrates. Springer, Berlin, Heidelberg, New York

    Book  Google Scholar 

  3. Jones EG (2007) The thalamus, 2nd edn. Cambridge University Press, Cambridge UK

    Google Scholar 

  4. Karten HJ (1969) The organization of the avian telencephalon and some speculations on the phylogeny of the amniote telencephalon. Ann N Y Acad Sci 167:164–179

    Article  Google Scholar 

  5. Butler AB (1994) The evolution of the dorsal thalamus of jawed vertebrates, including mammals: cladistic analysis and a new hypothesis. Brain Res Rev 19:29–65

    Article  CAS  PubMed  Google Scholar 

  6. González G, Puelles L, Medina L (2002) Organization of the mouse dorsal thalamus based on topology, calretinin immunostaining, and gene expression. Brain Res Bull 57:451–454

    Article  Google Scholar 

  7. Roth G, Grunwald W, Dicke U (2003) Morphology, axonal projection pattern, and responses to optic nerve stimulation of thalamic neurons in the fire-bellied toad Bombina orientalis. J Comp Neurol 461:91–110

    Article  PubMed  Google Scholar 

  8. Westhoff G, Roth G, Straka H (2004) Topographic representation of vestibular and somatosensory signals in the anuran thalamus. Neuroscience 124:669–683

    Article  CAS  PubMed  Google Scholar 

  9. Northcutt RG, Kicliter E (1980) Organization of the amphibian telencephalon. In: Ebbesson SOE (ed) Comparative neurology of the telencephalon. Plenum, New York, pp 203–255

    Chapter  Google Scholar 

  10. Kenigfest N, Martínez-Marcos A, Belekhova M, Font C, Lanuza E, Desfilis E, Martínez-García F (1997) A lacertilian dorsal retinorecipient thalamus: a re-investigation in the Old-world lizard Podarcis hispanica. Brain Behav Evol 50:313–334

    Article  CAS  PubMed  Google Scholar 

  11. Medina L, Veenman CL, Reiner A (1997) Evidence for a possible avian dorsal thalamic region comparable to the mammalian ventral anterior, ventral lateral, and oral ventroposterolateral nuclei. J Comp Neurol 384:86–108

    Article  CAS  PubMed  Google Scholar 

  12. Veenman CL, Medina L, Reiner A (1997) The avian homologues of the mammalian intralaminar, mediodorsal and midline thalamic nuclei: immunohistochemical and hodological evidence. Brain Behav Evol 48:78–98

    Article  Google Scholar 

  13. Wild JM (1997) The avian somatosensory system: the pathway from wing to Wulst in a passerine (Chloris chloris). Brain Res 759:122–134

    Article  CAS  PubMed  Google Scholar 

  14. Reiner A, Medina L, Veenman CL (1998) Structural and functional evolution of the basal ganglia in vertebrates. Brain Res Brain Res Rev 28:235–285

    Article  CAS  PubMed  Google Scholar 

  15. Jiao Y, Medina L, Veenman CL, Toledo C, Puelles L, Reiner A (2000) Identification of the anterior nucleus of the ansa lenticularis as the homolog of the mammalian subthalamic nucleus. J Neurosci 20:6998–7010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Llinás R, Ribary U, Contreras D, Pedroarena C (1998) The neuronal basis for consciousness. Philosophical Proceedings of the Royal Society of London B. 353: 1841–1849

    Google Scholar 

  17. Steriade M (2006) Grouping of brain rhythms in corticothalamic systems. Neuroscience 137:1087–1106

    Article  CAS  PubMed  Google Scholar 

  18. Sun Z, Wang HB, Laverghetta A, Yamamoto K, Reiner A (2005) The distribution and cellular localization of glutamic acid decarboxylase-65 (GAD65) mRNA in the forebrain and midbrain of domestic chick. J Chem Neuroanat 29:265–281

    Article  CAS  PubMed  Google Scholar 

  19. Kenigfest N, Belekhova M, Repérant J, Rio JP, Ward R, Vesselkin N (2005) The turtle thalamic anterior entopeduncular nucleus shares connectional and neurochemical characteristics with the mammalian thalamic reticular nucleus. J Chem Neuroanat 30:129–143

    Article  CAS  PubMed  Google Scholar 

  20. Pritz MB, Stritzel ME (1993) Neuronal subpopulations in a reptilian thalamic reticular nucleus. Neuroreport 4:791–794

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag GmbH Berlin Heidelberg

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Butler, A.B. (2009). Evolution of the Diencephalon. In: Binder, M.D., Hirokawa, N., Windhorst, U. (eds) Encyclopedia of Neuroscience. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-29678-2_3155

Download citation

Publish with us

Policies and ethics