Skip to main content

Performance Evaluation and Design Criteria

  • Reference work entry
Springer Handbook of Robotics

Abstract

This chapter is devoted to the design of robots, with a focus on serial architectures. In this regard, we start by proposing a stepwise design procedure; then, we recall the main issues in robot design. These issues pertain to workspace geometry, the kinetostatic, the dynamic, the elastostatic, and elastodynamic performance. In doing this, the mathematics behind the concepts addressed is briefly outlined to make the chapter self-contained.

We survey some of the tools and criteria used in the mechanical design and performance evaluation of robots. Our focus is limited to robots that are (a) primarily intended for manipulation tasks and (b) supplied with serial kinematic chains. The kinematics of parallel robots is addressed in detail in Chap. 12. Wheeled robots, walking robots, multifingered hands, and other similar specialized structures are studied in their own chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CAE:

computer-aided engineering

DOF:

degree of freedom

NASA:

National Aeronautics and Space Agency

SCARA:

selective compliance assembly robot arm

References

  1. O. Bottema, B. Roth: Theoretical Kinematics (North-Holland, Amsterdam 1979), Also available by Dover Publishing, New York 1990

    MATH  Google Scholar 

  2. J. Angeles: The qualitative synthesis of parallel manipulators, ASME J. Mech. Des. 126(4), 617–624 (2004)

    Article  Google Scholar 

  3. J. Denavit, R.S. Hartenberg: A kinematic notation for lower-pair mechanisms based on matrices, ASME J. Appl. Mech. 77, 215–221 (1955)

    MathSciNet  Google Scholar 

  4. G. Pahl, W. Beitz: Engineering Design. A Systematic Approach, 3rd edn. (Springer, London 2007), Translated from the original Sixth Edition in German

    Google Scholar 

  5. M. Petterson, J. Andersson, P. Krus, X. Feng, D. Wappling: Industrial Robot Design Optimization in the Conceptual Design Phase, Proc. Mechatron. Robot., Vol. 2, ed. by P. Drews (APS-European Centre for Mechatronics, Aachen 2004) pp. 125–130

    Google Scholar 

  6. Koning & Hartman, Amsterdam, The Netherlands, http://www.koningenhartman.com/nl/producten/ aandrijven_en_besturen/robots/ir_rp_ah/ (November 23, 2007)

  7. R. Clavel: Device for the movement and positioning of an element in space, Patent 4976582 (1990)

    Google Scholar 

  8. R. Vijaykumar, K.J. Waldron, M.J. Tsai: Geometric optimization of serial chain manipulator structures for working volume and dexterity, Int. J. Robot. Res. 5(2), 91–103 (1986)

    Article  Google Scholar 

  9. J.P. Merlet: Parallel Robots (Springer, Dordrecht 2006)

    MATH  Google Scholar 

  10. K. Hoffman: Analysis in Euclidean Space (Prentice-Hall, Englewood Cliffs 1975)

    MATH  Google Scholar 

  11. J. Angeles: Fundamentals of Robotic Mechanical Systems, 3rd edn. (Springer, New York 2007)

    Book  MATH  Google Scholar 

  12. L. Burmester: Lehrbuch der Kinematik (Arthur Felix, Leipzig 1886), in German

    MATH  Google Scholar 

  13. J.M. McCarthy: Geometric Design of Linkages (Springer, New York 2000)

    MATH  Google Scholar 

  14. H. Li: Ein Verfahren zur vollständigen Lösung der Rückwärtstransformation für Industrieroboter mit allegemeiner Geometrie. Ph.D. Thesis (Universität-Gesamthochscule Duisburg, Duisburg 1990)

    Google Scholar 

  15. M. Raghavan, B. Roth: Kinematic analysis of the 6R manipulator of general geometry, Proc. 5th Int. Symp. Robot. Res., ed. by H. Miura, S. Arimoto (MIT Press, Cambridge 1990)

    Google Scholar 

  16. J. Angeles: The degree of freedom of parallel robots: a group-theoretic approach, Proc. IEEE Int. Conf. Robot. Autom. (Barcelona 2005) pp. 1017–1024

    Google Scholar 

  17. C.C. Lee, J.M. Hervé: Translational parallel manipulators with doubly planar limbs, Mechanism Machine Theory 41, 433–455 (2006)

    Article  MATH  Google Scholar 

  18. B. Roth: Performance evaluation of manipulators from a kinematic viewpoint, National Bureau of Standards - NBS SP 495, 39–61 (1976)

    Google Scholar 

  19. A. Kumar, K.J. Waldron: The workspaces of a mechanical manipulator, ASME J. Mech. Des. 103, 665–672 (1981)

    Article  Google Scholar 

  20. D.C.H. Yang, T.W. Lee: On the workspace of mechanical manipulators, ASME J. Mech. Trans. Autom. Des. 105, 62–69 (1983)

    Article  Google Scholar 

  21. Y.C. Tsai, A.H. Soni: An algorithm for the workspace of a general n-R robot, ASME J. Mech. Trans. Autom. Des. 105, 52–57 (1985)

    Article  Google Scholar 

  22. K.C. Gupta, B. Roth: Design considerations for manipulator workspace, ASME J. Mech. Des. 104, 704–711 (1982)

    Article  Google Scholar 

  23. K.C. Gupta: On the nature of robot workspace, Int. J. Robot. Res. 5(2), 112–121 (1986)

    Article  Google Scholar 

  24. F. Freudenstein, E. Primrose: On the analysis and synthesis of the workspace of a three-link, turning-pair connected robot arm, ASME J. Mech. Trans. Autom. Des. 106, 365–370 (1984)

    Article  Google Scholar 

  25. C.C. Lin, F. Freudenstein: Optimization of the workspace of a three-link turning-pair connected robot arm, Int. J. Robot. Res. 5(2), 91–103 (1986)

    Article  Google Scholar 

  26. T. Yoshikawa: Manipulability of robotic mechanisms, Int. J. Robot. Res. 4(2), 3–9 (1985)

    Article  MathSciNet  Google Scholar 

  27. J. Loncaric: Geometric Analysis of Compliant Mechanisms in Robotics. Ph.D. Thesis (Harvard University, Harvard 1985)

    Google Scholar 

  28. B. Paden, S. Sastry: Optimal kinematic design of 6R manipulators, Int. J. Robot. Res. 7(2), 43–61 (1988)

    Article  Google Scholar 

  29. J.K. Salisbury, J.J. Craig: Articulated hands: force control and kinematic issues, Int. J. Robot. Res. 1(1), 4–17 (1982)

    Article  Google Scholar 

  30. G. Strang: Linear Algebra and Its Applications, 3rd edn. (Harcourt Brace Jovanovich College Publishers, New York 1988)

    Google Scholar 

  31. G.H. Golub, C.F. Van Loan: Matrix Computations (The Johns Hopkins Univ. Press, Baltimore 1989)

    MATH  Google Scholar 

  32. A. Dubrulle: An optimum iteration for the matrix polar decomposition, Electron. Trans. Numer. Anal. 8, 21–25 (1999)

    MATH  MathSciNet  Google Scholar 

  33. W.A. Khan, J. Angeles: The Kinetostatic Optimization of Robotic Manipulators: The Inverse and the Direct Problems, ASME J. Mech. Des. 128, 168–178 (2006)

    Article  Google Scholar 

  34. H. Pottmann, J. Wallner: Computational Line Geometry (Springer, Berlin, Heidelberg, New York 2001)

    MATH  Google Scholar 

  35. H. Asada: A geometrical representation of manipulator dynamics and its application to arm design, Trans. ASME J. Dyn. Sys. Meas. Contr. 105(3), 131–135 (1983)

    Article  MATH  Google Scholar 

  36. T. Yoshikawa: Dynamic manipulability of robot manipulators, Proc. IEEE Int. Conf. Robot. Autom. (1985) pp. 1033–1038

    Google Scholar 

  37. P.A. Voglewede, I. Ebert-Uphoff: Measuring closeness to singularities for parallel manipulators, Proc. IEEE Int. Conf. Robot. Autom. (New Orleans 2004) pp. 4539–4544

    Google Scholar 

  38. A. Bowling, O. Khatib: The dynamic capability equations: a new tool for analyzing robotic manipulator performance, IEEE Trans. Robot. 21(1), 115–123 (2005)

    Article  Google Scholar 

  39. C.M. Gosselin, J. Angeles: A new performance index for the kinematic optimization of robotic manipulators, Proc. 20th ASME Mech. Conf. (Kissimmee 1988) pp. 441–447

    Google Scholar 

  40. C. Gosselin, J. Angeles: The optimum kinematic design of a planar three-degree-of-freedom parallel manipulator, ASME J. Mech. Trans. Autom. Des. 110, 35–41 (1988)

    Article  Google Scholar 

  41. A. Bicchi, C. Melchiorri, D. Balluchi: On the mobility and manipulability of general multiple limb robots, IEEE Trans. Robot. Autom. 11(2), 232–235 (1995)

    Article  Google Scholar 

  42. P. Chiacchio, S. Chiaverini, L. Sciavicco, B. Siciliano: Global task space manipulability ellipsoids for multiple-arm systems, IEEE Trans. Robot. Autom. 7, 678–685 (1991)

    Article  Google Scholar 

  43. C. Melchiorri: Comments on Global task space manipulability ellipsoids for multiple-arm systems and further considerations, IEEE Trans. Robot. Autom. 9, 232–235 (1993)

    Article  Google Scholar 

  44. P. Chiacchio, S. Chiaverini, L. Sciavicco, B. Siciliano: Reply to comments on Global task space manipulability ellipsoids for multiple-arm systemsʼ and further considerations, IEEE Trans. Robot. Autom. 9, 235–236 (1993)

    Google Scholar 

  45. F.C. Park: Optimal robot design and differential geometry, ASME Special 50th Anniv. Design Issue 117(B), 87–92 (1995)

    Google Scholar 

  46. F.C. Park, J. Kim: Manipulability of closed kinematic chains, ASME J. Mech. Des. 120(4), 542–548 (1998)

    Article  Google Scholar 

  47. A. Liégeois: Automatic supervisory control for the configuration and behavior of multibody mechanisms, IEEE Trans. Sys. Man. Cyber. 7(12), 842–868 (1977)

    Google Scholar 

  48. C.A. Klein, C.H. Huang: Review of pseudo-inverse control for use with kinematically redundant manipulators, IEEE Trans. Sys. Man. Cyber. 13(2), 245–250 (1983)

    Google Scholar 

  49. J.M. Hollerbach: Optimum kinematic design of a seven degree of freedom manipulator. In: Robotics Research: The Second International Symposium, ed. by H. Hanafusa, H. Inoue (MIT Press, Cambridge 1985)

    Google Scholar 

  50. M.W. Spong: Remarks on robot dynamics: canonical transformations and riemannian geometry, Proc. IEEE Int. Conf. Robot. Autom. (1992) pp. 454–472

    Google Scholar 

  51. T.J. Graettinger, B.H. Krogh: The acceleration radius: a global performance measure for robotic manipulators, IEEE J. Robot. Autom. 4(11), 60–69 (1988)

    Article  Google Scholar 

  52. M. Griffis, J. Duffy: Global stiffness modeling of a class of simple compliant couplings, Mechanism Machine Theory 28, 207–224 (1993)

    Article  Google Scholar 

  53. S. Howard, M.J. Zefran Kumar: On the 6× 6 cartesian stiffness matrix for three-dimensional motions, Mechanism and Machine Theory 33, 389–408 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  54. L. Meirovitch: Fundamentals of vibrations (McGraw-Hill, Boston-London 2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jorge Angeles PhD or Frank C. Park Prof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Angeles, J., Park, F.C. (2008). Performance Evaluation and Design Criteria. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30301-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30301-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23957-4

  • Online ISBN: 978-3-540-30301-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics