Skip to main content

Exoskeletons for Human Performance Augmentation

  • Reference work entry
Springer Handbook of Robotics

Abstract

Although autonomous robotic systems perform remarkably in structured environments (e.g., factories), integrated human–robotic systems are superior to any autonomous robotic systems in unstructured environments that demand significant adaptation. The technology associated with exoskeleton systems and human power augmentation can be divided into lower-extremity exoskeletons and upper-extremity exoskeletons. The reason for this was twofold; firstly, one could envision a great many applications for either a stand-alone lower- or upper-extremity exoskeleton in the immediate future. Secondly, and more importantly for the division, is that these exoskeletons are in their early stages, and further research still needs to be conducted to ensure that the upper-extremity exoskeleton and lower-extremity exoskeleton can function well independently before one can venture an attempt to integrate them. This chapter first gives a description of the upper-extremity exoskeleton efforts and then will proceed with the more detailed description of the lower-extremity exoskeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BLEEX:

Berkeley lower-extremity exoskeleton

CGA:

clinical gait analysis

DOF:

degree of freedom

EMG:

electromyography

FSR:

force sensing resistor

HAL:

hybrid assisted limb

IAD:

intelligent assist device

RF:

radiofrequency

US:

ultrasound

References

  1. N.J. Mizen: Preliminary design for the shoulders and arms of a powered, exoskeletal structure, Cornell Aeronaut. Lab. Rep. VO-1692-V-4 (1965)

    Google Scholar 

  2. General Electric Co.: Hardiman I Arm Test, General Electric Rep. S-70-1019, Schenectady (1969)

    Google Scholar 

  3. General Electric Co.: Hardiman I Prototype Project, Special Interim Study, General Electric Rep. S-68-1060, Schenectady (1968)

    Google Scholar 

  4. P.F. Groshaw, General Electric Co.: Hardiman I Arm Test, Hardiman I Prototype, General Electric Rep. S-70-1019, Schenectady (1969)

    Google Scholar 

  5. B.J. Makinson, General Electric Co.: Research and Development Prototype for Machine Augmentation of Human Strength and Endurance, Hardiman I Project, General Electric Rep. S-71-1056, Schenectady (1971)

    Google Scholar 

  6. R.S. Mosher: Force-reflecting electrohydraulic manipulator, Electro-Technology (1960)

    Google Scholar 

  7. M. Vukobratovic, V. Ciric, D. Hristic: Controbution to the Study of Active Exosksltons, Proc. Of the 5th IFAC Congress (Paris, 1972)

    Google Scholar 

  8. D. Hristic, M. Vukobratovic: Development of active aids for handicapped, Proc. III International Conference on _bio-Mediacl Engineering (Sorrento, 1973)

    Google Scholar 

  9. A. Seireg, J. Grundmann: Design of a Multitask Exoskeletal Walking Device for Paraplegics, Biomechanics of Medical Devices (Marcel Dekker, New York 1981) pp. 569–644

    Google Scholar 

  10. K. Yamamoto, K. Hyodo, M. Ishii, T. Matsuo: Development of power assisting suit for assisting nurse labor, JSME Int. J. Ser. C 45(3), 703–711 (2002)

    Article  Google Scholar 

  11. K. Yamamoto, M. Ishii, K. Hyodo, T. Yoshimitsu, T. Matsuo: Development of Power assisting suit, JSME Int. J. Ser. C 46(3), 923–930 (2003)

    Article  Google Scholar 

  12. J.E. Pratt, B.T. Krupp, C.J. Morse, S.H. Collins: The RoboKnee: An Exoskeleton for Enhancing Strength and Endurance During Walking, Proc. IEEE International Conference on Robotics and Automation (New Orleans, 2004) pp. 2430–2435

    Google Scholar 

  13. H. Kawamoto, Y. Sankai: Power assist system HAL-3 for gait disorder person, Int. Conf. Computer Helping People with Special Needs (Linz, 2002)

    Google Scholar 

  14. H. Kawamoto, S. Kanbe, Y. Sankai: Power assist method for HAL-3 estimating operatorʼs intention based on motion information, Proc. of 2003 IEEE Workshop on Robot and Human Interactive Communication (Millbrae, 2003) pp. 67–72

    Google Scholar 

  15. K. Kong, D. Jeon: Design and control of an exoskeleton for the elderly and patients, IEEE/ASME Trans. Mechatron. 11(4), 220–226 (2006)

    Google Scholar 

  16. S.K. Agrawal, A. Fattah: Theory and design of an orthotic device for full or partial gravity-balancing of a human leg during motion, IEEE Trans. Neural Syst. Rehab. Eng. 12(2), 157–165 (2004)

    Article  Google Scholar 

  17. H. Kazerooni, S. Mahoney: Dynamics and control of robotic systems worn by humans, ASME J. Dyn. Syst. Meas. Contr. 113(3), 379–387 (1991)

    Article  Google Scholar 

  18. H. Kazerooni, M. Her: The dynamics and control of a haptic interface device, IEEE Trans. Robot. Autom. 10(4), 453–464 (1994)

    Article  Google Scholar 

  19. H. Kazerooni, T. Snyder: A case study on dynamics of haptic devices: Human induced instability in powered hand controllers, AIAA J. Guid. Contr. Dyn. 18(1), 108–113 (1995)

    Article  MATH  Google Scholar 

  20. H. Kazerooni: Human-robot interaction via the transfer of power and information signals, IEEE Trans. Syst. Cybernet. 20(2), 450–463 (1990)

    Article  Google Scholar 

  21. H. Kazerooni, J. Guo: Human extenders, ASME J. Dyn. Syst. Meas. Contr. 115(2B), 281–289 (1993)

    Article  Google Scholar 

  22. H. Kazerooni: The extender technology at the University of California Berkeley, J. Soc. Instrum. Control Eng. Jpn. 34, 291–298 (1995)

    Google Scholar 

  23. H. Kazerooni: The human power amplifier technology at the University of California Berkeley, J. Robot. Auton. Syst. 19, 179–187 (1996)

    Article  Google Scholar 

  24. U. Yutaka, H. Kazerooni: A μ-based synthesis based control for compliant maneuver, IEEE Conference on Systems, Man, and Cybernetics (Tokyo, 1999) pp. 1014–1019

    Google Scholar 

  25. T.J. Snyder, H. Kazerooni: A novel material handling system, IEEE International Conference on Robotics and Automation (1996) pp. 1147–1152

    Google Scholar 

  26. H. Kazerooni, T.B. Sheridan, P.K. Houpt: Robust compliant motion for manipulators, Part I: The fundamental concepts of compliant motion, IEEE J. Robot. Autom. 2(2), 83–92 (1986)

    Google Scholar 

  27. H. Kazerooni: On the robot compliant motion control, ASME J. Dyn. Syst. Meas. Contr. 111(3), 416–425 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  28. H. Kazerooni, B.J. Waibel, S. Kim: On the stability of robot compliant motion control: Theory and experiments, ASME J. Dyn. Syst. Meas. Contr. 112(3), 417–426 (1990)

    Article  MATH  Google Scholar 

  29. H. Kazerooni, B.J. Waibel: Theories and experiments on the stability of robot compliance control, IEEE Trans. Robot. Autom. 7(1), 95–104 (1991)

    Article  Google Scholar 

  30. Pneumatic human power amplifier module, Patent #5,915,673

    Google Scholar 

  31. Human power amplifier for vertical maneuvers (U.S. Patent #5,865,426)

    Google Scholar 

  32. Human power amplifier for lifting load with slack prevention apparatus (U.S. Patent #6,622,990)

    Google Scholar 

  33. Device and Method for Wireless Lifting Assist Device (U.S. Patent #6,681,638)

    Google Scholar 

  34. H. Kazerooni, D. Fairbanks, A. Chen, G. Shin: The Magic Glove, IEEE International Conference on Robotics and Automation (New Orleans, 2004)

    Google Scholar 

  35. H. Kazerooni, C. Foley: A practical robotic end-effector for grasping postal sacks, ASME J. Dyn. Syst. Meas. Contr. 126, 154–161 (2004)

    Article  Google Scholar 

  36. H. Kazerooni, C. Foley: A robotic mechanism for grasping sacks, IEEE Trans. Autom. Sci. Eng. 2(2), 111–120 (2005)

    Article  Google Scholar 

  37. J. Ghan, R. Steger, H. Kazerooni: Control and system identification for the Berkeley lower extremity exoskeleton, Adv. Robot. 20(9), 989–1014 (2006)

    Article  Google Scholar 

  38. H. Kazerooni, R. Steger: The Berkeley lower extremity exoskeletons, ASME J. Dyn. Syst. Meas. Contr. 128, 14–25 (2006)

    Article  Google Scholar 

  39. H. Kazerooni, L. Huang, J.L. Racine, R. Steger: On the Control of Berkeley Lower Extremity Exoskeleton (BLEEX), Proc. of IEEE International Conference on Robotics and Automation (Barcelona, 2005)

    Google Scholar 

  40. S. Kim, G. Anwar, H. Kazerooni: High-speed Communication Network for Controls with Application on the Exoskeleton, American Control Conference (Boston, 2004)

    Google Scholar 

  41. S. Kim, H. Kazerooni: High Speed Ring-based distributed Networked control system For Real-Time Multivariable Applications, ASME International Mechanical Engineering Congress (Anaheim, 2004)

    Google Scholar 

  42. C. Kirtley: CGA Normative Gait Database, Hong Kong Polytechnic University. (available http://guardian.curtin.edu.au/cga/data/)

  43. A. Winter: International Society of Biomechanics, Biomechanical Data Resources, Gait Data. (available http://www.isbweb.org/data/)

  44. J. Linskell: CGA Normative Gait Database, Limb Fitting Centre, Dundee, Scotland, Young Adult. (available http://guardian.curtin.edu.au/cga/data/)

  45. A. Chu, H. Kazerooni, A. Zoss: On the Biomimetic Design of the Berkeley Lower Extremity Exoskeleton (BLEEX), Proc. of IEEE International Conference on Robotics and Automation (Barcelona, 2005)

    Google Scholar 

  46. A. Zoss, H. Kazerooni, A. Chu: On the biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX), IEEE/ASME Trans. Mechatron. 11(2), 128–138 (2006)

    Article  Google Scholar 

  47. T. McGee, J. Raade, H. Kazerooni: Monopropellant-driven free piston hydraulic pump for mobile robotic systems, J. Dyn. Syst. Meas. Contr. 126, 75–81 (2004)

    Article  Google Scholar 

  48. J. Raade, H. Kazerooni, T. McGee: Analysis and design of a novel power supply for mobile robots, IEEE Trans. Autom. Sci. Eng. 2(3), 226–232 (2005)

    Article  Google Scholar 

  49. K. Amundson, J. Raade, N. Harding, H. Kazerooni: Hybrid Hydraulic-Electric Power Unit for Field and Service Robots, Proc. of IEEE Intelligent Robots and Systems (Edmonton, 2005)

    Google Scholar 

  50. D.P. Ferris, V. Czerniecki, B. Hannaford: An ankle-foot orthosis powered by artificial muscles, J. Appl. Biomech. 21, 189–197 (2005)

    Google Scholar 

  51. D.P. Ferris, K.E. Gordon, G.S. Sawicki, A. Peethambaran: An improved powered ankle-foot orthosis using proportional myoelectric control, Gait Posture 23, 425–428 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Homayoon Kazerooni Dr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Kazerooni, H. (2008). Exoskeletons for Human Performance Augmentation. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30301-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30301-5_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23957-4

  • Online ISBN: 978-3-540-30301-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics