Skip to main content

Biologically Inspired Robots

  • Reference work entry
Springer Handbook of Robotics

Abstract

After having stressed the difference between bio-inspired and biomimetic robots, this chapter successively describes bio-inspired morphologies, sensors, and actuators. Then, control architecture that, beyond mere reflexes, implement cognitive abilities like memory or planning, or adaptive processes like learning, evolution and development are described. Finally, the chapter also reports related works on energetic autonomy, collective robotics, and biohybrid robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATR:

Advanced Telecommunications Research Institute International

CCD:

charge-coupled devices

CONRO:

configurable robot

CPG:

central pattern generators

DARPA:

Defense Advanced Research Projects Agency

DOF:

degree of freedom

EPFL:

Ecole Polytechnique Fédérale de Lausanne

IST:

Information Society Technologies

IST:

Instituto Superior Técnico

JPL:

Jet Propulsion Laboratory

NASA:

National Aeronautics and Space Agency

SLAM:

simultaneous localization and mapping

US:

ultrasound

VI:

value iteration

VLSI:

very-large-scale integrated

References

  1. R. Cordeschi: The Discovery of the Artificial: Behavior, Mind and Machines Before and Beyond Cybernetics (Kluwer, Dordrecht 2002)

    Google Scholar 

  2. L. Paulson: Biomimetic robots, Computer 37(9), 48–53 (2004)

    Article  Google Scholar 

  3. C. Breazeal: Designing Sociable Robots (MIT Press, Cambridge 2002)

    Google Scholar 

  4. K. Itoh, H. Miwa, M. Zecca, H. Takanobu, S. Roccella, M. Carozza, P. Dario, A. Takanishi: Mechanical design and motion control of emotion expression humanoid robot WE-4R, Proc. 16-th CISM-IFToMM Symp. Robot Des. Dyn. Contr. (2006) pp. 255–262

    Google Scholar 

  5. K. MacDorman, H. Ishiguro: The uncanny advantage of using androids in cognitive and social science research, Interact. Stud. 7(3), 297–337 (2006)

    Article  Google Scholar 

  6. W. Shen, B. Salemi, P. Will: Hormone-inspired adaptive communication and distributed control for CONRO self-reconfigurable robots, IEEE Trans. Robot. Autom. 18(5), 700–712 (2002)

    Article  Google Scholar 

  7. W. Shen: Polymorphic Robotics Laboratory, University of Southern California, Marina del Ray, http://www.isi.edu/robots/

  8. N. Franceschini, J.M. Pichon, C. Blanes: From insect vision to robot vision, Philos. Trans. R. Soc. London B 337, 283–294 (1992)

    Article  Google Scholar 

  9. S. Viollet, N. Franceschini: Aerial minirobot that stabilizes and tracks with a bio-inspired visual scanning sensor. In: Biorobotics. Methods and Applications, ed. by B. Webb, T. Consi (MIT Press, Cambridge 2001) pp. 67–83

    Google Scholar 

  10. F. Ruffier, N. Franceschini: Optic flow regulation: the key to aircraft automatic guidance, Robot. Auton. Syst. 50(4), 177–194 (2005)

    Article  Google Scholar 

  11. R. Möller, D. Lambrinos, R. Pfeifer, T. Labhart, R. Wehner: Modeling ant navigation with an autonomous agent, From Animals to Animats 5. Proc. 5-th Int. Conf. Simul. Adapt. Behav. (MIT Press, Cambridge 1998) pp. 185–194

    Google Scholar 

  12. A. Ude, C. Atkeson, G. Cheng: Combining peripheral and foveal humanoid vision to detect, pursue, recognize and act, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (Las Vegas 2003) pp. 2173–2178

    Google Scholar 

  13. G. Metta: An attentional system for a humanoid robot exploiting space variant vision, IEEE-RAS Int. Conf. Humanoid Robots, Vol. 22–24 (Tokyo 2001) pp. 359–366

    Google Scholar 

  14. A. Davison, O. Stasse, K. Yokoi: Vision based SLAM for a humanoid robot, Int. Conf. Robot. Autom. (ICRA), SLAM Workshop, Vol. 16 (2005)

    Google Scholar 

  15. P. Michel, J. Chestnutt, J. Kuffner, T. Kanade: Vision-guided humanoid footstep planning for dynamic environments, Proc. IEEE-RAS Conf. Humanoid Robots (Humanoids) (2005) pp. 13–18

    Google Scholar 

  16. R. Reeve, A. van Schaik, C. Jin, T. Hamilton, B. Torben-Neilsen, B. Webb: Directional hearing in a silicon cricket, Biosystems 87(2-3), 307–313 (2007)

    Article  Google Scholar 

  17. R. Reeve, B. Webb: New neural circuits for robot phonotaxis, Philos. Trans. R. Soc. London A 361, 2245–2266 (2003)

    Article  MathSciNet  Google Scholar 

  18. R. Müller, J. Hallam: Knowledge mining for biomimetic smart antenna shapes, Robot. Auton. Syst. 50, 131–145 (2005)

    Article  Google Scholar 

  19. R. Kuc: Biomimetic sonar recognizes objects using binaural information, J. Acoust. Soc. Am. 102(2), 689–696 (1997)

    Article  Google Scholar 

  20. K. Nakadai, H. Okuno, H. Kitano: Robot recognizes three simultaneous speech by active audition, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (2003) pp. 398–405

    Google Scholar 

  21. N. Cowan, E. Ma, M. Cutkosky, R. Full: A biologically inspired passive antenna for steering control of a running robot, Springer Tracts Adv. Robot. 15, 541–550 (2005)

    Google Scholar 

  22. R. Russell, J. Wijaya: Object location and recognition using whisker sensors, Aust. Conf. Robot. Autom. (2003), CD-ROM Proceedings ISBN 0-9587583-5-2

    Google Scholar 

  23. M.J. Pearson, I. Gilhespy, C. Melhuish, B. Mitchinson, M. Nibouche, A.G. Pipe, T.J. Prescott: A biomimetic haptic sensor, Int. J. Adv. Robot. Syst. 2(4), 335–343 (2005)

    Google Scholar 

  24. T. Someya, Y. Kato, T. Sekitani, S. Iba, Y. Noguchi, Y. Murase, H. Kawaguchi, T. Sakurai: Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes, PNAS 102, 12321–12325 (2005)

    Article  Google Scholar 

  25. V. Maheshwari, R. Saraf: High-resolution thin-film device to sense texture by touch, Science 312(5779), 1501–1504 (2006)

    Article  Google Scholar 

  26. T. Morse, T. Ferrée, S. Lockery: Robust spatial navigation in a robot inspired by chemotaxis in Caenorhabditis elegans, Adapt. Behav. 6(3-4), 393–410 (1998)

    Article  Google Scholar 

  27. F. Grasso: Environmental information, animal behavior, and biorobot design. Reflections on locating chemical sources in marine environments. In: Biorobotics. Methods and Applications, ed. by B. Webb, T.R. Consi (MIT Press, Cambridge 2001) pp. 21–35

    Google Scholar 

  28. K. Itoh, H. Miwa, M. Matsumoto, M. Zecca, H. Takanobu, S. Roccella, M.C. Carrozza, P. Dario, A. Takanishi: Various emotional expressions with emotion expression humanoid robot WE-4RII, Proc. 1-st IEEE Tech. Exhib. Based Conf. Robot. Autom. (2004) pp. 35–36

    Google Scholar 

  29. A.J. Ijspeert, A. Crespi, D. Ryczko, J.M. Cabelguen: From swimming to walking with a salamander robot driven by a spinal cord model, Science 315(5817), 1416–1420 (2007)

    Article  Google Scholar 

  30. D. Tsakiris, M. Sfakiotakis, A. Menciassi, G. LaSpina, P. Dario: Polychaete-like undulatory robotic locomotion, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (2005) pp. 3029–3034

    Google Scholar 

  31. J. Ayers, J. Witting: Biomimetic approaches to the control of underwater walking machines, Philos. Trans. A. Math. Phys. Eng. Sci. 365(1850), 273–295 (2007)

    Article  Google Scholar 

  32. J. Clark, J. Cham, S. Bailey, E. Froehlich, P. Nahata, R. Full, M. Cutkosky: Biomimetic design and fabrication of a hexapedal running robot, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (2001) pp. 3643–3649

    Google Scholar 

  33. M.C. Birch, R.D. Quinn, G. Hahm, S.M. Phillips, B.T. Drennan, A.J. Fife, R.D. Beer, X. Yu, G. Garverick, S. Laksanacharoen, A.J. Pollack, R.E. Ritzmann: Miniature hybrid robot propelled by legs, IEEE Robot. Autom. Mag. 10, 20–30 (2002)

    Article  Google Scholar 

  34. Y. Song, M. Sitti: Surface tension driven biologically inspired water strider robots: theory and experiments, IEEE Trans. Robot. 23(3), 578–589 (2007)

    Article  Google Scholar 

  35. I. Poulakakis, J. Smith, M. Buehler: Modeling and experiments of untethered quadrupedal running with a bounding gait: The Scout II robot, Int. J. Robot. Res. 24(4), 239–256 (2005)

    Article  Google Scholar 

  36. T. Geng, B. Porr, F. Wörgötter: Fast biped walking with a sensor-driven neuronal controller and real-time online learning, Int. J. Robot. Res. 25(3), 243–259 (2006)

    Article  Google Scholar 

  37. K. Sangbae, A. Asbeck, M. Cutkosky, W. Provancher: SpinybotII: climbing hard walls with compliant microspines, Proc. 12-th Int. Conf. Adv. Robot. (ICAR) (2005) pp. 601–606

    Google Scholar 

  38. A.T. Asbeck, K.. Sangbae, M.R. Cutkosky, W.R. Provancher, M. Lanzetta: Scaling hard vertical surfaces with compliant microspine arrays, Int. J. Robot. Res. 25(12), 1165–1179 (2006)

    Article  Google Scholar 

  39. M. Spenko, M. Cutkosky, C. Majidi, R. Fearing, R. Groff, K. Autumn: Foot design and integration for bioinspired climbing robots, Proc. SPIE Unmanned Systems Technology VIII, Vol. 6230-19 (2006) pp. 1–12

    Google Scholar 

  40. U. Scarfogliero, C. Stefanini, P. Dario: A bioinspired concept for high efficiency locomotion in micro robots: the jumping Robot Grillo, Proc. IEEE Int. Conf. Robot. Autom. (2006) pp. 4037–4042

    Google Scholar 

  41. D. Barrett, M. Triantafyllou, D. Yue, M. Grosenbaugh, M. Wolfgang: Drag reduction in fish-like locomotion, J. Fluid Mech. 392, 183–212 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  42. F. Fish: Limits of nature and advances of technology: What does biomimetics have to offer to aquatic robots?, Appl. Bion. Biomech. 3(1), 49–60 (2006)

    Article  Google Scholar 

  43. J.H. Long, J. Schumacher, N. Livingston, M. Kemp: Four flippers or two? Tetrapodal swimming with an aquatic robot, Bioinsp. Biomimet 1, 20–29 (2006)

    Article  Google Scholar 

  44. X. Deng, L. Schenato, W.C. Wu, S. Sastry: Flapping flight for biomimetic robotic insects: Part I-System modeling, IEEE Trans. Robot. 22(4), 776–788 (2006)

    Article  Google Scholar 

  45. X. Deng, L. Schenato, W.C. Wu, S. Sastry: Flapping flight for biomimetic robotic insects: Part II-Flight control design, IEEE Trans. Robot. 22(4), 789–803 (2006)

    Article  Google Scholar 

  46. P. Zdunich, D. Bilyk, M. MacMaster, D. Loewen, J. DeLaurier, R. Kornbluh, T. Low, S. Stanford, D. Holeman: The development and testing of the Mentor flapping-wing micro air vehicle, J. Aircraft (in press)

    Google Scholar 

  47. T. Mueller, J. DeLaurier: An overview of micro air vehicle aerodynamics. In: Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications, Progress in Astronautics and Aeronautics, Vol. 195, ed. by T. Mueller (AIAA, Reston 2002) pp. 1–9

    Google Scholar 

  48. K. Jones, C. Bradshaw, J. Papadopoulos, M. Platzer: Development and flight testing of flapping-wing propelled micro air vehicles, 2nd AIAA "Unmanned Unlimited" Conf. Workshop Exhibit, Vol. 6549 (AIAA, San Diego 2003)

    Google Scholar 

  49. K. Jones, C. Bradshaw, J. Papadopoulos, M. Platzer: Improved performance and control of flapping-wing propelled micro air vehicles, 42-nd AIAA Aerospace Sci. Meeting Exhibit, Vol. 399 (AIAA, Reno 2004)

    Google Scholar 

  50. N. Chronister: The Ornithopter Zone, Rochester, http://www.ornithopter.org/flappingwings/toporov2.htm (last accessed December 2007)

  51. J. DeLaurier: Institute for Aerospace Studies, University of Toronto, Canada, http://www.ornithopter.ca/index_e.html (last accessed December 2007)

  52. J. DeLaurier: The development and testing of a full-scale piloted ornithopter, Cdn. Aeronaut. Space J. 45(2), 72–82 (1999)

    Google Scholar 

  53. I. Walker, D. Dawson, T. Flash, F. Grasso, R. Hanlon, B. Hochner, W. Kier, M. Pagano, C. Rahn, Q. Zhang: Continuum robot arms inspired by cephalopods, Proc. SPIE, Vol. 5804 (2005) pp. 303–314

    Google Scholar 

  54. I. Walker, C. Carreras, R. McDonnell, G. Grimes: Extension versus bending for continuum robots, Int. J. Adv. Robot. Syst. 3(2), 171–178 (2006)

    Google Scholar 

  55. P. Scarfe, E. Lindsay: Air muscle actuated low cost humanoid hand, Int. J. Adv. Robot. Syst. 3(1), 139–146 (2006)

    Google Scholar 

  56. M. Carrozza, P. Dario, F. Vecchi, S. Roccella, M. Zecca, F. Sebastiani: The CYBERHAND: on the design of a cybernetic prosthetic hand intended to be interfaced to the peripheral nervous system, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2003) pp. 2642–2647

    Google Scholar 

  57. Y. Gao, A. Ellery, M. Jaddou, J. Vincent, S. Eckersley: A novel penetration system for in situ astrobiological studies, Int. J. Adv. Robot. Syst. 2(4), 281–286 (2005)

    Google Scholar 

  58. D. Dennett: Why not the whole iguana?, Behav. Brain Sci. 1, 103–104 (1978)

    Article  Google Scholar 

  59. R. Brooks: A robust layered control system for a mobile robot, IEEE Robot. Autom. 2(1), 14–23 (1986)

    Article  Google Scholar 

  60. R. Brooks: Cambrian Intelligence. The Early History of the New AI (MIT Press, Cambridge 1999)

    MATH  Google Scholar 

  61. J. Connell: Minimalist Mobile Robotics. A Colony-Style Architecture for an Artificial Creature (Academic, New York 1990)

    MATH  Google Scholar 

  62. R. Arkin: Behavior-Based Robotics (MIT Press, Cambridge 1998)

    Google Scholar 

  63. J. Piaget: Biology and Knowledge: An Essay on the Relations between Organic Relations and Cognitive Processes (Univ. Chicago Press, Chicago 1971)

    Google Scholar 

  64. M. Arbib: Schema theory. In: The Handbook of Brain Theory and Neural Networks, ed. by M. Arbib (MIT Press, Cambridge 1995)

    Google Scholar 

  65. F. Saito, T. Fukuda: A first result of the Brachiator III – A new brachiation robot modeled on a siamang, Proc. ALife V, ed. by C. Langton, K. Shimohara (MIT Press, Cambridge 1996) pp. 354–360

    Google Scholar 

  66. D. Filliat, J.A. Meyer: Map-based navigation in mobile robots – I. A review of localization strategies, J. Cognit. Syst. Res. 4(4), 243–282 (2003)

    Article  Google Scholar 

  67. J.A. Meyer, D. Filliat: Map-based navigation in mobile robots – II. A review of map-learning and path-planning strategies, J. Cogn. Syst. Res. 4(4), 283–317 (2003)

    Article  Google Scholar 

  68. O. Trullier, S. Wiener, A. Berthoz, J.A. Meyer: Biologically-based artificial navigation systems: Review and prospects, Prog. Neurobiol. 51, 483–544 (1997)

    Article  Google Scholar 

  69. M. Khamassi, L. Lachèze, B. Girard, A. Berthoz, A. Guillot: Actor-critic models of reinforcement learning in the basal ganglia: From natural to artificial rats, Adapt. Behav. 13(2), 131–148 (2005), Special issue towards artificial rodents

    Article  Google Scholar 

  70. F. Montes-Gonzalez, T. Prescott, K. Gurney, M. Humphries, P. Redgrave: An embodied model of action selection mechanisms in the vertebrate brain, From Animals to Animats 6. Proc. 6-th Int. Conf. Simul. Adapt. Behav. (MIT Press, Cambridge 2000) pp. 157–166

    Google Scholar 

  71. B. Girard, D. Filliat, J.A. Meyer, A. Berthoz, A. Guillot: Integration of navigation and action selection functionalities in a computational model of cortico-basal ganglia-thalamo-cortical loops, Adapt. Behav. 13(2), 115–130 (2005)

    Article  Google Scholar 

  72. J.A. Meyer, A. Guillot, B. Girard, M. Khamassi, P. Pirim, A. Berthoz: The Psikharpax project: Towards building an artificial rat, Robot. Auton. Syst. 50(4), 211–223 (2005)

    Article  Google Scholar 

  73. http://www.his.sunderland.ac.uk/mirrorbot/ (last accessed December 2007)

  74. G. Rizzolatti, L. Craighero: The mirror-neuron system, Annu. Rev. Neurosci. 27, 169–192 (2004)

    Article  Google Scholar 

  75. S. Wermter, G. Palm, M. Elshaw (Eds.): Biomimetic Neural Learning for Intelligent Robots – Intelligent Systems, Cognitive Robotics, and Neuroscience, Lect. Notes Comput. Sci., Vol. 3575 (Springer, Berlin 2005)

    Google Scholar 

  76. J. Krichmar, G. Edelman: Brain-based devices: Intelligent systems based on principles of the nervous system, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Vol. 1 (2003) pp. 940–945

    Google Scholar 

  77. A. Seth, J. McKinstry, G. Edelman, J. Krichmar: Spatiotemporal processing of whisker input supports texture discrimination by a brain-based device, From Animals to Animats 8. Proc. 8-th Int. Conf. Simul. Adapt. Behav. (MIT Press, Cambridge 2004) pp. 130–139

    Google Scholar 

  78. J. Krichmar, A. Seth, D. Nitz, J. Fleischer, G. Edelman: Spatial navigation and causal analysis in a brain-based device modeling cortical-hippocampal interactions, Neuroinformatics 3(3), 197–222 (2005)

    Article  Google Scholar 

  79. R. Kozma, D. Wong, M. Demirer, W. Freeman: Learning intentional behavior in the K-model of the amygdala and entorhinal cortex with the cortico-hippocampal formation, Neurocomputing 65-66, 23–30 (2005)

    Article  Google Scholar 

  80. S. Nolfi, D. Floreano: Evolutionary Robotics. The Biology, Intelligence, and Technology of Self-Organizing Machines (MIT Press, Cambridge 2000)

    Google Scholar 

  81. W. Langdon, P. Nordin: Evolving hand-eye coordination for a humanoid robot with machine code genetic programming, Lect. Notes Comput. Sci. 2038, 313–324 (2001)

    Article  Google Scholar 

  82. D. Filliat, J. Kodjabachian, J.A. Meyer: Evolution of neural controllers for locomotion and obstacle-avoidance in a 6-legged robot, Connect. Sci. 11, 223–240 (1999)

    Google Scholar 

  83. R. Barate, S. Doncieux, J.A. Meyer: Design of a bio-inspired controller for dynamic soaring in a simulated UAV, Bioinsp. Biomimet. 1, 76–88 (2006)

    Article  Google Scholar 

  84. S. Doncieux, J.B. Mouret, A. Angeli, R. Barate, J.A. Meyer, E. de Margerie: Building an artificial bird: Goals and accomplishments of the Robur project, Proc. Eur. Micro Aerial Vehicles Conf. (EMAV, Braunschweig 2006)

    Google Scholar 

  85. H. Lipson, J. Pollack: Automatic design and manufacture of robotic lifeforms, Nature 406, 974–978 (2000)

    Article  Google Scholar 

  86. J. Kodjabachian, J.A. Meyer: Evolution and development of control architecture in animats, Robot. Auton. Syst. 16, 161–182 (1995)

    Article  Google Scholar 

  87. J.A. Meyer, S. Doncieux, D. Filliat, A. Guillot: Evolutionary approaches to neural control of rolling, walking, swimming and flying animats or robots. In: Biologically inspired robot behavior engineering, ed. by R. Duro, J. Santos, M. Grana (Springer, Berlin, Heidelberg 2003) pp. 1–43

    Google Scholar 

  88. M. Lungarella, G. Metta: Beyond gazing, pointing, and reaching: A survey of developmental robotics, Proc. 3-rd Int. Workshop Epigenet. Robot. Modeling Cognitive Development in Robotic Systems (2003) pp. 81–89

    Google Scholar 

  89. J. Piaget: The Childʼs Conception of the World (Littlefield Adams, New York 1990)

    Google Scholar 

  90. R. Brooks, C. Breazeal, M. Marjanovic, B. Scasselati, M. Williamson: The Cog project: Building a humanoid robot. In: Computation for Metaphors, Analogy, and Agents, Vol. LNCS 1562, ed. by C. Nehaniv (Springer, Berlin, Heidelberg ) pp. 52–87

    Google Scholar 

  91. R. Brooks, C. Breazeal, M. Marjanovic, B. Scassellati, M. Williamson: The Cog project: Building a humanoid robot, Lect. Notes Comput. Sci. 1562, 52–87 (1999)

    Article  Google Scholar 

  92. B. Adams, C. Breazeal, R. Brooks, B. Scassellati: Humanoid robots: A new kind of tool, IEEE Intell. Syst. Appl. 15(4), 25–31 (2000)

    Article  Google Scholar 

  93. P.Y. Oudeyer, F. Kaplan, V. Hafner, A. Whyte: The playground experiment: Task-independent development of a curious robot, Proc. AAAI Spring Symp. Devel. Robot., ed. by D. Bank, L. Meeden (2005) pp. 42–47

    Google Scholar 

  94. S. Wilkinson: Gastrobots – Benefits and challenges of microbial fuel cells in food powered robot applications, Auton. Robots 9, 99–111 (2000)

    Article  MathSciNet  Google Scholar 

  95. I. Kelly: The design of a robotic predator: The SlugBot, Robotica 21, 399–406 (2003)

    Article  Google Scholar 

  96. I. Ieropoulos, C. Melhuish, J. Greenman, I. Horsfield: EcoBot-II: An artificial agent with a natural metabolism, Int. J. Adv. Robot. Syst. 2(4), 295–300 (2005)

    Google Scholar 

  97. C. Kube, C. Parker, T. Wang, H. Zhang: Biologically inspired collective robotics. In: Recent Developments in Biologically Inspired Computing, ed. by L. DeCastro, F. von Zuben (Idea, New York 2004) pp. 367–396

    Google Scholar 

  98. C. Kube, E. Bonabeau: Cooperative transport by ants and robots, Robot. Auton. Syst. 30(1), 85–101 (2000)

    Article  Google Scholar 

  99. F. Mondada, M. Bonani, S. Magnenat, A. Guignard, D. Floreano: Physical connections and cooperation in swarm robotics, Proc. 8-th Conf. Intell. Auton. Syst. (IAS8) (2004) pp. 53–60

    Google Scholar 

  100. D. Paley, F. Zhang, N. Leonard: Cooperative Control for Ocean Sampling: The Glider Coordinated Control System, IEEE Trans. Contr. Syst. Techn. In press.

    Google Scholar 

  101. R.C. Michelson: The Entomopter. In: Neurotechnology for Biomimetic Robots, ed. by J. Ayers, J. Davis, A. Rudolph (MIT Press, Cambridge 2002) pp. 481–509

    Google Scholar 

  102. R.C. Michelson: Novel approaches to miniature flight platforms, J. Aerosp. Eng. 218, 363–373 (2004)

    Google Scholar 

  103. T. Huntsberger: Biologically inspired autonomous rover control, Auton. Robots 8, 1–6 (2001)

    Google Scholar 

  104. K. Doya, E. Uribe: The Cyber Rodent Project: Exploration of adaptive mechanisms for self-preservation and self-reproduction, Adapt. Behav. 13(2), 149–160 (2005)

    Article  Google Scholar 

  105. L. Steels: Evolving grounded communication for robots, Trends Cogn. Sci. 7(7), 308–312 (2003)

    Article  Google Scholar 

  106. V. Hafner, F. Kaplan: Learning to interpret pointing gestures: experiments with four-legged autonomous robots, Lect. Notes Artif. Intell. 3575, 225–234 (2005)

    Google Scholar 

  107. Y. Kuwana, I. Shimoyama, Y. Sayama, H. Miura: Synthesis of pheromone-oriented emergent behavior of a silkworm moth, Proc. IROS, Vol. 96 (1996) pp. 1722–1729

    Google Scholar 

  108. H. Herr, B. Dennis: A swimming robot actuated by living muscle tissue, J. Neuroeng. Rehabil. 1(6), 1–9 (2004)

    Google Scholar 

  109. D. Bakkum, A. Shkolnik, G. Ben-Ary, P. Gamblen, T. DeMarse, S. Potter: Removing some ʼAʼ from AI: Embodied cultured networks, Lect. Notes Comput. Sci. 3139, 130–145 (2004)

    Article  Google Scholar 

  110. B. Reger, K. Fleming, V. Sanguineti, S. Alford, F. Mussa-Ivaldi: Connecting brains to robots: an artificial body for studying the computational properties of neural tissue, Artif. Life 6, 307–324 (2000)

    Article  Google Scholar 

  111. S. Tsuda, K. Zauner, Y. Gunji: Robot control: from silicon circuitry to cells, Biol. Inspired Approaches Adv. Inform. Tech. (BioADIT) (2006) pp. 20–32

    Google Scholar 

  112. M. Lebedev, J. Carmena, J. OʼDoherty, M. Zacksenhouse, C. Henriquez, J. Principe, M. Nicolelis: Cortical ensemble adaptation to represent velocity of an artificial actuator controlled by a brain–machine interface, J. Neurosci. 25(19), 4681–4693 (2005)

    Article  Google Scholar 

  113. Frost & Sullivan: Report on Emerging Trends and Innovations in Biomechatronics (Technical Insights Inc., Farmington 2006)

    Google Scholar 

  114. G. Tamburrini: Università di Napoli Federico II, Naples, http://ethicbots.na.infn.it/ (last accessed December 2007)

  115. G. Hertz: New Media Arts Lab, California Institute for Telecommunications and Information Technology, University of California, Irvine, http://www.conceptlab.com/roachbot/ (last accessed December 2007)

  116. A. Behar, J. Matthews, F. Carsey, J. Jones: NASA/JPL Tumbleweed Polar Rover, IEEE Aerosp. Conf. Proc., Vol. 1 (2004) pp. 395–395

    Google Scholar 

  117. J.A. Meyer, A. Guillot: From SAB90 to SAB94: Four years of animat research, From Animals to Animats 3. Proc. 3-rd Int. Conf. Simul. Adapt. Behav. (MIT Press, Cambridge 1994)

    Google Scholar 

  118. A. Guillot, J.A. Meyer: From SAB94 to SAB2000: Whatʼs new, animat?, From Animals to Animats 6. Proc. 6-th Int. Conf. Simul. Adapt. Behav. (MIT Press, Cambridge 2000)

    Google Scholar 

  119. F. Jacob: Evolution and tinkering, Science 196(4295), 1161–1166 (1977)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jean-Arcady Meyer PhD or Agnès Guillot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Meyer, JA., Guillot, A. (2008). Biologically Inspired Robots. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30301-5_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30301-5_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23957-4

  • Online ISBN: 978-3-540-30301-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics