Skip to main content

Abstract:

Alcanivorax borkumensis is a marine bacterium that uses exclusively petroleum oil hydrocarbons as sources of carbon and energy (and is therefore designated “hydrocarbonoclastic”). It is found in low numbers in all oceans of the world and becomes abundant in oil-contaminated waters. Its ubiquity, unusual physiology and demonstrated role in biodegradation show that it is globally important in the removal of hydrocarbons from polluted marine systems. Genome sequencing, extensive functional genomic analysis and genome-wide constraint-based modeling of the metabolism Alcanivorax borkumensis SK2 type strain, an outstanding paradigm of hydrocarbonoclastic bacteria, has provided substantial insights into the genomic basis of the efficiency and versatility of its hydrocarbon utilization, nutrient scavenging capabilities, niche-specific stress responses and the metabolic routes and flux distributions underlying its remarkable hydrocarbon utilization abilities. The wealth of information thus far generated provides a solid knowledge-base for the understanding the physiology and ecological success of this fascinating and globally important bacterium and for the design of new strategies to mitigate the ecological damage caused by oil spills.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham WR, Meyer H, Yakimov M (1998) Novel glycine containing glucolipids from the alkane using bacterium Alcanivorax borkumensis. Biochim Biophys Acta 1393: 57–62.

    PubMed  CAS  Google Scholar 

  • Berman T, Bronk DA (2003) Dissolved organic nitrogen: a dynamic participant in aquatic ecosystems. Aquat Microb Ecol 31: 279–305.

    Article  Google Scholar 

  • Bruns A, Berthe-Corti L (1999) Fundibacter jadensis gen. nov., sp. nov., a new slightly halophilic bacterium, isolated from intertidal sediment. Int J Syst Bacteriol 49: 441–448.

    Article  PubMed  Google Scholar 

  • Cappello S, Denaro R, Genovese M, Giuliano L, Yakimov MM (2007) Predominant growth of Alcanivorax during experiments on “oil spill bioremediation” in mesocosms. Microbiol Res 162: 185–190.

    Article  PubMed  CAS  Google Scholar 

  • Cases I, De Lorenzo V, Ouzounis CA (2003) Transcription regulation and environmental adaptation in bacteria. Trends Microbiol 11: 248–253.

    Article  PubMed  CAS  Google Scholar 

  • Fernández-Martínez J, Pujalte MJ, García-Martínez J, Mata M, Garay E, Rodríguez-Valera F (2003) Description of Alcanivorax venustensis sp. nov. and reclassification of Fundibacter jadensis DSM 12178T (Bruns and Berthe-Corti 1999) as Alcanivorax jadensis comb. nov., members of the emended genus Alcanivorax. Int J Syst Evol Microbiol 53: 331–338.

    Article  PubMed  Google Scholar 

  • Galperin MY, Nikolskaya AN, Koonin EV (2001) Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett 203: 11–21.

    Article  PubMed  CAS  Google Scholar 

  • Harayama S, Kishira H, Kasai Y, Shutsubo K (1999) Petroleum biodegradation in marine environments. J Mol Microbiol Biotechnol 1: 63–70.

    PubMed  CAS  Google Scholar 

  • Kalscheuer R, Stöveken T, Malkus U, Reichelt R, Golyshin PN, Sabirova JS, Ferrer M, Timmis KN, Steinbüchel A (2007) Analysis of storage lipid accumulation in Alcanivorax borkumensis: evidence for alternative triacylglycerol biosynthesis routes in bacteria. J Bacteriol 189: 918–928.

    Article  PubMed  CAS  Google Scholar 

  • Kasai Y, Kishira H, Syutsubo K, Harayama S (2001) Molecular detection of marine bacterial populations on beaches contaminated by the Nakhodka tanker oil-spill accident. Environ Microbiol 3: 246–255.

    Article  PubMed  CAS  Google Scholar 

  • Kasai Y, Kishira H, Sasaki T, Syutsubo K, Watanabe K, Harayama S (2002) Predominant growth of Alcanivorax strains in oil-contaminated and nutrient-supplemented sea water. Environ Microbiol 4: 141–147.

    Article  PubMed  CAS  Google Scholar 

  • Kim BH, Kim HG, Bae GI, Bang IS, Bang SH, Choi JH, Park YK (2004) Expression of cspH upon nutrient up-shift in Salmonella enterica serovar Typhimurium. Arch Microbiol 182: 37–43.

    Article  PubMed  CAS  Google Scholar 

  • Klappenbach JA, Dunbar JM, Schmidt TM (2000) rRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol 66: 1328–1333.

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Shao Z (2005) Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. Int J Syst Evol Microbiol 55: 1181–1186.

    Article  PubMed  CAS  Google Scholar 

  • Lombardot T, Bauer M, Teeling H, Amann R, Glöckner FO (2005) The transcriptional regulator pool of the marine bacterium Rhodopirellula baltica SH 1T as revealed by whole genome comparisons. FEMS Microbiol Lett 242: 137–145.

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Bueno MA, Tobes R, Rey M, Ramos JL (2002) Detection of multiple extracytoplasmic function (ECF) sigma factors in the genome of Pseudomonas putida KT2440 and their counterparts in Pseudomonas aeruginosa PA01. Environ Microbiol 4: 842–855.

    Article  PubMed  Google Scholar 

  • Mohanty BK, Kushner SR (2003) Genomic analysis in Escherichia coli demonstrates differential roles for polynucleotide phosphorylase and RNase II in mRNA abundance and decay. Mol Microbiol 50: 645–658.

    Article  PubMed  CAS  Google Scholar 

  • Ochsner UA, Fiechter A, Reiser J (1994) Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J Biol Chem 269: 19787–19795.

    PubMed  CAS  Google Scholar 

  • Reeves PR, Hobbs M, Valvano MA, Skurnik M, Whitfield C, Coplin D, Kido N, Klena J, Maskell D, Raetz CRH, Rick PD (1996) Bacterial polysaccharide synthesis and gene nomenclature. Trends Microbiol 4: 495–503.

    Article  PubMed  CAS  Google Scholar 

  • Reva ON, Hallin PF, Willenbrock H, Sicheritz-Ponten T, Tümmler B, Ussery DW (2008) Global features of the Alcanivorax borkumensis SK2 genome. Environ Microbiol 10: 614–625.

    Article  PubMed  CAS  Google Scholar 

  • Rivas R, García-Fraile P, Peix A, Mateos PF, Martínez-Molina E, Velázquez E (2007) Alcanivorax balearicus sp. nov., isolated from Lake Martel. Int J Syst Evol Microbiol 57: 1331–1335.

    Article  PubMed  CAS  Google Scholar 

  • Rocchetta HL, Burrows LL, Lam JS (1999) Genetics of O-antigen biosynthesis in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 63: 523–553.

    PubMed  CAS  Google Scholar 

  • Röling WFM, Milner MG, Jones DM, Lee K, Daniel F, Swannell RJP, Head IM (2002) Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Appl Environ Microbiol 68: 5537–5548.

    Article  PubMed  Google Scholar 

  • Röling WFM, Milner MG, Jones DM, Fratepietro F, Swannell RPJ, Daniel F, Head IM (2004) Bacterial community dynamics and hydrocarbon degradation during a field-scale evaluation of bioremediation on a mudflat beach contaminated with buried oil. Appl Environ Microbiol 70: 2603–2613.

    Article  PubMed  Google Scholar 

  • Ron EZ, Rosenberg E (2001) Natural roles of biosurfactants. Environ Microbiol 3: 229–236.

    Article  PubMed  CAS  Google Scholar 

  • Sabirova JS, Chernikova TN, Timmis KN, Golyshin PN (2008) Niche-specificity factors of a marine oil-degrading bacterium Alcanivorax borkumensis SK2. FEMS Microbiol Lett 285: 89–96.

    Article  PubMed  CAS  Google Scholar 

  • Sabirova JS, Ferrer M, Regenhardt D, Timmis KN, Golyshin PN (2006a) Proteomic insights into metabolic adaptations in Alcanivorax borkumensis induced by alkane utilization. J Bacteriol 188: 3763–3773.

    Article  PubMed  CAS  Google Scholar 

  • Sabirova JS, Ferrer M, Lünsdorf H, Wray V, Kalscheuer R, Steinbüchel A, Timmis KN, Golyshin PN (2006b) Mutation in a “tesB-like” hydroxyacyl-coenzyme A-specific thioesterase gene causes hyperproduction of extracellular polyhydroxyalkanoates by Alcanivorax borkumensis SK2. J Bacteriol 188: 8452–8459.

    Article  PubMed  CAS  Google Scholar 

  • Sauer U, Lasko DR, Fiaux J, Hochuli M, Glaser R, Szyperski T, Wüthrich K, Bailey JE (1999). Metabolic flux ratio analysis of genetic and environmental modulations of Escherichia coli central carbon metabolism. J Bacteriol 181: 6679–6688.

    PubMed  CAS  Google Scholar 

  • Schneiker S, Dos Santos VAPM, Bartels D, Bekel T, Brecht M, Buhrmester J, Chernikova TN, Denaro R, Ferrer M, Gertler C, Goesmann A, Golyshina OV, Kaminski F, Khachane AN, Lang S, Linke B, McHardy AC, Meyer F, Nechitaylo T, Pühler A, Regenhardt D, Rupp O, Sabirova JS, Selbitschka W, Yakimov MM, Timmis KN, Vorhölter FJ, Weidner S, Kaiser O, Golyshin PN (2006) Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nat Biotechnol 24: 997–1004.

    Article  PubMed  CAS  Google Scholar 

  • Søballe B, Poole RK (1998) Requirement for ubiquinone downstream of cytochrome(s) b in the oxygen-terminated respiratory chains of Escherichia coli K-12 revealed using a null mutant allele of ubiCA. Microbiology 144: 361–373.

    Article  PubMed  Google Scholar 

  • Tischler AD, Camilli A (2004) Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Mol Microbiol 53: 857–869.

    Article  PubMed  CAS  Google Scholar 

  • van Beilen JB, Marín MM, Smits THM, Röthlisberger M, Franchini AG, Witholt B, Rojo F (2004) Characterization of two alkane hydroxylase genes from the marine hydrocarbonoclastic bacterium Alcanivorax borkumensis. Environ Microbiol 6: 264–273.

    Article  PubMed  CAS  Google Scholar 

  • van Beilen JB, Smits THM, Roos FF, Brunner T, Balada SB, Röthlisberger M, Witholt B (2005) Identification of an amino acid position that determines the substrate range of integral membrane alkane hydroxylases. J Bacteriol 187: 85–91.

    Article  PubMed  CAS  Google Scholar 

  • van Beilen JB, Funhoff EG, Van Loon A, Just A, Kaysser L, Bouza M, Holtackers R, Röthlisberger M, Li Z, Witholt B (2006) Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases. Appl Environ Microbiol 72: 59–65.

    Article  PubMed  CAS  Google Scholar 

  • Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 18: 257–266.

    Article  PubMed  CAS  Google Scholar 

  • Yakimov MM, Golyshin PN, Lang S, Moore ERB, Abraham WR, Lünsdorf H, Timmis KN (1998) Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48: 339–348.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Martins dos Santos, V., Sabirova, J., Timmis, K.N., Yakimov, M.M., Golyshin, P.N. (2010). Alcanivorax borkumensis. In: Timmis, K.N. (eds) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77587-4_89

Download citation

Publish with us

Policies and ethics