Skip to main content

J1 Filmwise Condensation of Pure Vapors

  • Reference work entry
  • First Online:
VDI Heat Atlas

Part of the book series: VDI-Buch ((VDI-BUCH))

1 Introduction

When a vapor comes into contact with a surface, the temperature of which is below the temperature of thermodynamic equilibrium, the vapor at this surface turns from the gaseous state to the liquid state. This process is known as condensation. Associated with the change of aggregate status is a significant production of heat.

If the condensation is caused by direct contact with the liquid phase, it is referred to as mixed or injection condensation. In the case of sufficient supercooling of the vapor and/or in the presence of condensation nuclei (e.g., tiny dust particles, small droplets), a mist can already be formed in the gas phase through spontaneous condensation.

Technically relevant in most applications is indirect condensation on cooled solid surfaces. Here, drops of liquid first start to form around individual condensation nuclei, becoming larger as the condensation process proceeds. This is known as drop condensation. If boundary layer conditions exist, which...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

9 Bibliography

  1. Nusselt W (1916) Die Oberflächenkondensation des Wasserdampfes. Z VDI 60:541–546, 569–575

    Google Scholar 

  2. Kutateladze SS, Gogonin II (1979) Heat transfer in film condensation of slowly moving vapor. Int J Heat Mass Transfer 22:1593–1599

    Article  Google Scholar 

  3. Müller J (1992) Wärmeübergang bei der Filmkondensation und seine Einordnung in Wärme- und Stoffübertragungsvorgänge bei Filmströmungen. Fortsch Ber VDI, Reihe 3(270)

    Google Scholar 

  4. Numrich R (1994) Stoff-, Wärme- und Impulsaustausch bei der Kondensation von Ein- und Mehrkomponentensystemen. Verlag Shaker, Aachen

    Google Scholar 

  5. Yüksel L (1987) Wärme- und Stoffübergang bei der nichtisothermen Absorption am Rieselfilm. Fortschr Ber VDI, Reihe 3(133)

    Google Scholar 

  6. Blangetti F (1979) Lokaler Wärmeübergang bei der Kondensation mit überlagerter Konvektion im vertikalen Rohr. Dissertation, Universität Karlsruhe (TH)

    Google Scholar 

  7. Krebs R (1984) Kondensation von Dampf in Anwesenheit nichtkondensierbarer Gase in turbulent durchströmten senkrechten Kondensatorrohren. Fortschr Ber VDI, Reihe 6(153)

    Google Scholar 

  8. Numrich R (1990) Influence of gas flow on heat transfer in film condensation. Chem Eng Technol 13:136–143

    Article  Google Scholar 

  9. Kellenbenz J (1994) Wärmeübergang bei der Kondensation von strömenden Dämpfen reiner Stoffe und binärer Gemische. Fortsch Ber VDI, Reihe 3(365)

    Google Scholar 

  10. Lange J (1994) Die partielle Kondensation zweier im flüssigen Zustand löslicher Komponenten aus einem Gas/Dampf- Gemisch im senkrechten Rohr bei erhöhtem Druck. Dissertation, Universität GH Paderborn

    Google Scholar 

  11. Claus N (1996) Kondensation strömender reiner Dämpfe im senkrechten Rohr bei Drücken bis 15 bar. Dissertation, Universität GH Paderborn

    Google Scholar 

  12. Numrich R, Claus N, Hadley M (1995) Influence of gas flow on condensation process. Eurotherm Seminar, Paris

    Google Scholar 

  13. Andreussi P (1980) The onset of droplet entrainment in annular downward flows. Can J Chem Eng 58(4):267–270

    Article  Google Scholar 

  14. Hadley M (1996) Kondensation binärer Dampfgemische unter dem Einfluß der turbulenten Gasströmung bei Drücken bis 15 bar. Dissertation, Universität GH Paderborn

    Google Scholar 

  15. Henstock W, Hanratty T (1975) The interfacial drag and the height of the wall layer in annular flows. AIChE J 21:990–1000

    Google Scholar 

  16. Ishii M, Grolmes MA (1975) Inception criteria for droplet entrainment in two- phase cocurrent film flow. AIChE J 21(2):308–318

    Article  Google Scholar 

  17. Fujii T, Uehara H, Kurata C (1972, I) Laminar filmwise condensation of flowing vapour on a horizontal cylinder. Int J Heat Mass Transfer 15: 235–246

    Google Scholar 

  18. Fujii T (1982) Condensation of steam and refrigerant vapors. 7th International Heat transfer conference, München

    Google Scholar 

  19. Fujii T, Uehara H, Hirata K, Oda K (1972, II) Heat transfer and flow resistance in condensation of low pressure steam flowing through tube banks. Int J Heat Mass Transfer 15:246–260

    Google Scholar 

  20. Breber G, Palen JW, Taborek J (1980) Prediction of horizontal tubeside condensation of pure components using flow regime criteria. J Heat Transfer 102:471–476

    Google Scholar 

  21. Owen RG, Lee WC (1983) Some recent developments in condensation theory. Chem Eng Res Des 61(11), 335–361

    Google Scholar 

  22. Rohsenow WM, Hartnett JP, Ganic EN (1985) Handbook of heat transfer fundamentals, 2nd edn. McGraw Hill, New York

    Google Scholar 

  23. Chen MM (1961) An analytical study of laminar film condensation. Part 1: flat plate; Part 2: single and multiple tubes. J Heat Transfer C 38:48–60

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this entry

Cite this entry

Numrich, R., Müller, J. (2010). J1 Filmwise Condensation of Pure Vapors. In: VDI Heat Atlas. VDI-Buch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77877-6_58

Download citation

Publish with us

Policies and ethics