Skip to main content

Wet Etching

  • Reference work entry
Handbook of Visual Display Technology
  • 1575 Accesses

Abstract

Wet etching is a popular process in the mass production for electronic devices, especially in the display and integrated circuit industry. The major techniques of wet etching are described in this chapter. It begins with a technical overview and discussion of the applications of wet etching in flat panel display fabrication. The chapter explains the principles of wet etching in terms of etching mechanisms, materials processing, and other critical factors. In the applications, some special requests are involved in the etching process. Moreover, the process requirements such as tools, etchants, special considerations, and control factors are also explained. The chapter concludes with a discussion on the future development of wet etching.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BOE:

Buffered Oxide Etch

CD:

Critical Dimension

IGZO:

Indium Gallium Zinc Oxide

ITO:

Indium Tin Oxide

IZO:

Indium Zinc Oxide

LCD:

Liquid Crystal Display

MoW:

Molybdenum Tungsten

TFT:

Thin-Film Transistor

References

  1. Lee CY, Chang C, Shih WP, Dai CL (2010) Wet etching rates of InGaZnO for the fabrication of transparent thin-film transistors on plastic substrates. Thin Solid Film 518:3992

    Article  Google Scholar 

  2. Cheong WS, Yoon YS, Shin JH, Hwang CS, Chu HY (2009) Process development of ITO source/drain electrode for the top-gate indium–gallium–zinc oxide transparent thin-film transistor. Thin solid film 517:4094

    Article  Google Scholar 

  3. Lee HN, Kyung J, Sung MC, Kim DY, Kang SK, Kim SJ, Kim CN, Kim HG, Kim ST (2008) Oxide TFT with multilayer gate insulator for backplane of AMOLED device. J Soc Inf Display 16:265

    Article  Google Scholar 

  4. Wei HF, Hsiue GH, Liu CY, Chen KF (2008) Jpn J Appl Phys 47:9001

    Google Scholar 

  5. Franssila S (2004) Enhancement of dimension uniformity of wet-etched thick insulator holes in triode carbon nanotube field emisson display devices. Introduction to microfabrication. Wiley, New York, p 120

    Google Scholar 

  6. Taylor D (1998) Wet-etch process improvements through SPC. Solid State Tech 119

    Google Scholar 

  7. Dini JW (1984) Fundamental of chemical milling. American Machinist 768:113

    Google Scholar 

  8. El-Hofy HAG (2005) Advanced machining processes. McGraw-Hill, Blacklick, p 115

    Google Scholar 

  9. Collie MJ (1982) Etching compositions and process. Noyes data, Park Ridge, NJ, p 80

    Google Scholar 

  10. Sangwal K (1985) Etching of crystals theory, experiment, and application. Defects in solids. North Holand, Amsterdam, p 20

    Google Scholar 

  11. Quirk M (2001) Semiconductor manufacturing technology. Prentice Hall, Upper Saddle River, NJ, p 421

    Google Scholar 

  12. Singer P (1997) The many challenges of oxide etching. Semicond Int 110

    Google Scholar 

  13. Lii Y, Chang C, Sze S (1996) Etching. ULSI technology, McGraw-Hill, New York, 342

    Google Scholar 

  14. Singer P (1993) Meeting oxide, poly and metal etch requirements. Semicond Int Cahners 51

    Google Scholar 

  15. Zant PV (2000) Microchip fabrication. McGraw-Hill, New York, 259

    Google Scholar 

  16. Scholten M, van den Meerakker JEAM (1993) J Electrochem Soc 140:471

    Article  Google Scholar 

  17. Huang CJ, Su YK, Wu SL (2004) On the mechanism of ITO etching: the specificity of halogen acids. Mater Chem Phys 84:146

    Article  Google Scholar 

  18. Köhler M (1999) The effect of solvent on the etching of ITO electrode. Etching in microsystem technology. Wiley-VCH, Weinheim, p 9.

    Google Scholar 

  19. Senturia SD (2001) Microsystem design. Kluwer, New York

    Google Scholar 

  20. Kern W, Deckert C (1978) Thin film processes. Chap V-1, Academic, New York

    Google Scholar 

  21. Plummer JD, Deal MD, Griffin PB (2000) Silicon VLSI technology: fundamentals, practice and modeling. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

Further Reading

  • Rai-Choudhury P (1997) Handbook of microlithography, micromachining, and microfabrication, vol 1 and 2. SPIE Press and IEE Press, Bellingham, WA

    Google Scholar 

  • Nguyen NT, Wereley S (2002) Fundamentals and applications of microfulidics. Artech House, Boston

    Google Scholar 

  • Madou M (1997) Fundamentals of microfabrication. CRC, London

    Google Scholar 

  • Jaeger RC (1993) Introduction to microelectronic fabrication. Addison-Wesley, Reading

    Google Scholar 

  • Walker P, Tarn WH (1991) CRC handbook of metal etchants. CRC press, Boca Raton, pp 287–291

    Google Scholar 

  • Kohler M (1999) Etching in Microsystem Technology. Wiley, New York, p 329

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Chi Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Cheng, HC. (2012). Wet Etching. In: Chen, J., Cranton, W., Fihn, M. (eds) Handbook of Visual Display Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79567-4_59

Download citation

Publish with us

Policies and ethics