Skip to main content

Almost Sure Convergence of Random Variables

  • Reference work entry
  • First Online:
International Encyclopedia of Statistical Science
  • 878 Accesses

Definition and Relationship to Other Modes of Convergence

Almost sure convergence is one of the most fundamental concepts of convergence in probability and statistics. A sequence of random variables (X n ) n ≥ 1, defined on a common probability space (Ω, \(\mathcal{F}\), P), is said to converge almost surely to the random variable X, if

$$P(\{\omega \, :\,\lim \limits_{n\rightarrow \infty }{X}_{n}(\omega ) = X(\omega )\}) = 1.$$

Commonly used notations are \(X_n \mathop \to \limits^{a.s.} X\) or lim n X n = X (a. s. ). Conceptually, almost sure convergence is a very natural and easily understood mode of convergence; we simply require that the sequence of numbers (X n (ω)) n ≥ 1 converges to X(ω) for almost all ωΩ. At the same time, proofs of almost sure convergence are usually quite subtle.

There are rich connections of almost sure convergence with other classical modes of convergence, such as convergence in probability, defined by lim n P( | X n X | ≥ ε) = 0 for all ε>...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,100.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

  • Aaronson J, Burton RM, Dehling H, Gilat D, Hill T, Weiss B (1996) Strong laws for L- and U-statistics. Trans Am Math Soc 348:2845–2866

    MATH  MathSciNet  Google Scholar 

  • Baum LE, Katz M (1965) Convergence rates in the law of large numbers. Trans Am Math Soc 120:108–123

    MATH  MathSciNet  Google Scholar 

  • Birkhoff GD (1931) Proof of the Ergodic theorem. Proc Nat Acad Sci USA 17:656–660

    Google Scholar 

  • Borel E (1909) Les probabilits dnombrables et leurs application arithmtique. Rendiconti Circolo Mat Palermo 27: 247—271

    MATH  Google Scholar 

  • Brosamler G (1988) An almost everywhere central limit theorem. Math Proc Cambridge Philos Soc 104:561–574

    MATH  MathSciNet  Google Scholar 

  • Cantelli FP (1933) Sulla determinazione empirica della leggi di probabilita. Gior Ist Ital Attuari 4:421–424

    MATH  Google Scholar 

  • Csörgo M, Révész P (1981) Strong approximations in probability and statistics. Academic, New York

    Google Scholar 

  • Dehling H, Denker M, Philipp W (1985) Invariance principles for von Mises and U-Statistics. Z Wahrsch verw Geb 67: 139–167

    MathSciNet  Google Scholar 

  • Dehling H (1989) The functional law of the iterated logarithm for von-Mises functionals and multiple Wiener integrals. J Multiv Anal 28:177–189

    MATH  MathSciNet  Google Scholar 

  • Dehling H (1989) Complete convergence of triangular arrays and the law of the iterated logarithm for U-statistics. Stat Prob Lett 7:319–321

    MATH  MathSciNet  Google Scholar 

  • Doob JL (1953) Stochastic processes. Wiley, New York

    MATH  Google Scholar 

  • Dudley RM (1968) Distances of probability measures and random variables. Ann Math Stat 39:1563–1572

    MATH  MathSciNet  Google Scholar 

  • Fisher A (1989) Convex invariant means and a pathwise central limit theorem. Adv Math 63:213–246

    Google Scholar 

  • Glivenko VI (1933) Sulla determinazione empirica della leggi di probabilita. Gior Ist Ital Attuari 4:92–99

    Google Scholar 

  • Hartmann P, Wintner A (1941) On the law of the iterated logarithm. Am J Math 63:169–176

    Google Scholar 

  • Hoeffding W (1961) The strong law of large numbers for U-statistics. University of North Carolina, Institute of Statistics Mimeograph Series 302

    Google Scholar 

  • Hsu PL, Robbins H (1947) Complete convergence and the law of large numbers. Proc Nat Acad Sci USA 33:25–31

    MATH  MathSciNet  Google Scholar 

  • Khintchin A (1924) ber einen Satz der Wahrscheinlichkeitsrechnung. Fund Math 6:9–20

    Google Scholar 

  • Kingman JFC (1968) The ergodic theory of subadditive stochastic processes. J R Stat Soc B 30:499–510

    MATH  MathSciNet  Google Scholar 

  • Kolmogorov AN (1930) Sur la loi forte des grandes nombres. Comptes Rendus Acad Sci Paris 191:910–912

    Google Scholar 

  • Komlos J, Major P, Tusnady G (1975) An approximation of partial sums of independent RVs and the sample DF I. Z Wahrsch verw Geb 32:111–131

    MATH  MathSciNet  Google Scholar 

  • Marcinkiewicz J, Zygmund A (1937) Sur les fonctions indpendantes. Fund Math 29:60–90

    Google Scholar 

  • Schatte P (1988) On strong versions of the central limit theorem. Math Nachr 137:249–256

    MATH  MathSciNet  Google Scholar 

  • Sen PK (1972) Limiting behavior of regular functionals of empirical distributions for stationary mixing processes. Z Wahrsch verw Geb 25:71–82

    MATH  Google Scholar 

  • Serfling RJ (1980) Approximation theorems of mathematical statistics. Wiley, New York

    MATH  Google Scholar 

  • Skorohod AV (1956) Limit theorems for stochastic processes. Theory Prob Appl 1:261–290

    MathSciNet  Google Scholar 

  • Stout WF (1974) Almost sure convergence. Academic, New York

    MATH  Google Scholar 

  • Strassen V (1964) An invariance principle for the law of the iterated logarithm. Z Wahrsch verw Geb 3:211–226

    MATH  MathSciNet  Google Scholar 

  • Van der Vaart AW (1998) Asymptotic statistics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Wichura MJ (1970) On the construction of almost uniformly convergent random variables with given weakly convergent image laws. Ann Math Stat 41:284–291

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Dehling, H. (2011). Almost Sure Convergence of Random Variables. In: Lovric, M. (eds) International Encyclopedia of Statistical Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04898-2_113

Download citation

Publish with us

Policies and ethics