Skip to main content

Motion Compensation in Emission Tomography

  • Reference work entry
Handbook of Particle Detection and Imaging

Abstract

With the ever-improving spatial resolution available in single photon emission computed tomography (SPECT) and, especially, in positron emission tomography (PET), the unavoidable organ and subject motion is becoming one of the dominant factors limiting the practically achievable spatial resolution in the tomographic images. Moreover, uncorrected subject motion can lead to potentially severe image artifacts and compromise the quantitative integrity of the data. The latter is of special importance in PET where quantitative assessment of tracer concentrations is commonplace both in static investigations via so-called standardized uptake values (SUVs) and in dynamic studies aiming at tracer kinetic modeling and quantification of the corresponding transport constants. Correction of the heart-cycle-related motion in cardiac applications has a long tradition and is covered extensively in the literature. Correction of breathing-related organ motion in emission tomography, however, has drawn considerable interest only in recent years in the context of oncological PET. This is mainly due to the demands of therapy response monitoring and radiation treatment planning. The third important area is high-precision motion correction of random head motion in brain investigations. In this chapter, we give an overview of the methods employed to minimize – and possibly eliminate – the motion influence in emission tomography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a total traveled distance d, the resulting PSF is given by

    $${H}_{t}(x) = \frac{1} {2} \cdot \left (\mathrm{erf}\left ( \frac{x} {{\sigma }_{s}\sqrt{2}}\right ) -\mathrm{erf}\left ( \frac{x - d} {{\sigma }_{s}\sqrt{2}}\right )\right )\,\text{,}$$

    where

    $$\mathrm{erf}(x) = \frac{2} {\sqrt{\pi }}{\int \nolimits }_{0}^{x}\mathrm{{e}}^{-{{\it { s}}}^{2}}d{\it { s}}\,\mathrm{.}$$
  2. 2.

    There also exist high-precision systems such as laser scanners which derive surface models of the monitored object without the need for special target structures. While these techniques are interesting, there are additional complications in deriving the relevant motion information related to the fact that no a priori known landmarks are present in the acquired data leading to the need for image registration in order to derive the actual subject motion. The future will show whether these systems will prove useful in the context of emission tomography.

  3. 3.

    We also include in this notation the case of stroboscopic (gated) acquisitions, where each frame corresponds to a certain phase of a cyclic motion (i.e., heartbeat or breathing cycle).

  4. 4.

    and, contrary to the image correlation coefficient, is applicable to inter-modality registration (e.g. MRI vs. PET) as well

  5. 5.

    Due to the noise and convergence characteristics of iterative image reconstruction, adding up the low-count images after reconstruction would not really solve this problem.

  6. 6.

    Four suitable coordinates unambiguously define a straight line in 3D space. This special choice of coordinates is convenient since α and d are also used in the 2D case. Moreover, the ring coordinates z 1, z 2 are directly provided by the front end electronics and are required anyway in further data processing.

  7. 7.

    The distinction between histograms in LOR space and sinograms is not really important in the present context. Sinograms are generated from the histograms by a so-called re-binning process, i.e., a change to coordinates more suitable for image reconstruction.

  8. 8.

    f in is different for each LOR. Since the number of LORs typically is of the order of 108 and adequate time resolution is required, computation of the f in is the most time-consuming step in the motion correction process.

References

  • Apostolova I, Wiemker R, Paulus T, Kabus S, Dreilich T, van den Hoff J, Plotkin M, Mester J, Brenner W, Buchert R, Klutmann S (2010) Combined correction of recovery effect and motion blur for SUV quantification of solitary pulmonary nodules in FDG PET/CT. Eur Radiol 20(8):1868–1877. doi:10.1007/s00330-010- 1747-1

    Article  Google Scholar 

  • Aurich V, Weule J (1995) Non-linear Gaussian filters performing edge preserving diffusion. In: Mustererkennung 1995, 17, DAGM-symposium. Springer, London, pp 538–545

    Google Scholar 

  • Bühler P, Just U, Will E, Kotzerke J, van den Hoff J (2004) An accurate method for correction of head movement in PET. IEEE Trans Med Imaging 23(9):1176–1185. doi:10.1109/TMI.2004.831214

    Article  Google Scholar 

  • Dawood M, Büther F, Jiang X, Schäfers KP (2008) Respiratory motion correction in 3-D PET data with advanced optical flow algorithms. IEEE Trans Med Imaging 27(8):1164–1175. doi:10.1109/TMI.2008.918321

    Article  Google Scholar 

  • Ehman RL, Felmlee JP (1989) Adaptive technique for high-definition MR imaging of moving structures. Radiology 173(1):255–263

    Google Scholar 

  • Faber TL, Raghunath N, Tudorascu D, Votaw JR (2009) Motion correction of PET brain images through deconvolution: I. Theoretical develpment and analysis in software simulations. Phys Med Biol 54(3):797–811. doi:10.1088/0031-9155/54/3/021

    Article  Google Scholar 

  • Fleet DJ, Weiss Y (2005) Handbook of mathematical models in computer vision, 1st edn. Springer, Berlin. ISBN 978-0387263717 (Optical flow estimation, Chap. 15)

    Google Scholar 

  • Fulton RR, Hutton BF, Braun M, Ardekani B, Larkin R (1994) Use of 3D reconstruction to correct for patient motion in SPECT. Phys Med Biol 39(3): 563–574. doi:10.1088/0031-9155/39/3/018

    Article  Google Scholar 

  • Grotus N, Reader AJ, Stute S, Rosenwald JC, Giraud P, Buvat I (2009) Fully 4D list-mode reconstruction applied to respiratory-gated PET scans. Phys Med Biol 54(6):1705–1721. doi:10.1088/0031-9155/54/6/020

    Article  Google Scholar 

  • Herzog H, Tellmann L, Fulton R, Stangier I, Rota Kops E, Bente K, Boy C, Hurlemann R, Pietrzyk U (2005) Motion artifact reduction on parametric PET images of neuroreceptor binding. J Nucl Med 46(6):1059–1065

    Google Scholar 

  • Hill DLG, Batchelor PG, Holden M, Hawkes DJ (2001) Medical image registration. Phys Med Biol 46(3):R1–R45. doi:10.1088/0031-9155/46/3/201

    Article  ADS  Google Scholar 

  • Lamare F, Cresson T, Savean J, Cheze Le Rest C, Reader AJ, Visvikis D (2007ab) Respiratory motion correction for PET oncology applications using affine transformation of list mode data. Phys Med Biol 52(1):121–140. doi:10.1088/0031-9155/52/1/009

    Google Scholar 

  • Lamare F, Ledesma Carbayo MJ, Cresson T, Kontaxakis G, Santos A, Le Rest CC, Reader AJ, Visvikis D (2007b) List-mode-based reconstruction for respiratory motion correction in PET using non-rigid body transformations. Phys Med Biol 52(17):5187–5204. doi:10.1088/0031-9155/52/17/006

    Article  Google Scholar 

  • Langner J (2008) Event-driven motion compensation in positron emission tomography: development of a clinically applicable method. PhD thesis, Faculty of Medicine Carl Gustav Carus, University of Technology, Dresden, Germany, http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-23509

  • Langner J, Bühler P, Just U, Pötzsch C, Will E, van den Hoff J (2006) Optimized list-mode acquisition and data processing procedures for ACS2 based PET systems. Z Med Phys 16(1):75–82. doi:10.1078/0939-3889-00294

    Google Scholar 

  • Livieratos L, Stegger L, Bloomfield PM, Schafers K, Bailey DL, Camici PG (2005) Rigid-body transformation of list-mode projection data for respiratory motion correction in cardiac PET. Phys Med Biol 50(14):3313. doi:10.1088/0031-9155/50/14/008

    Article  Google Scholar 

  • Maintz JB, Viergever MA (1998) A survey of medical image registration. Med Image Anal 2(1):1–36. doi:10.1016/S1361-8415(01)80026-8

    Article  Google Scholar 

  • Menke M, Atkins MS, Buckley KR (1996) Compensation methods for head motion detected during PET imaging. IEEE Trans Nucl Sci 43(1):310–317. doi:10.1109/23.485971

    Article  ADS  Google Scholar 

  • Narayanan MV, King MA, Soares EJ, Byrne CL, Pretorius PH, Wernick MN (1999) Application of the Karhunen-Loeve transform to 4D reconstruction of cardiac gated SPECT images. IEEE Trans Nucl Sci 46(4):1001–1108. doi:10.1109/23.790811

    Article  ADS  Google Scholar 

  • Nehmeh SA, Erdi YE (2008) Respiratory motion in positron emission tomography/computed tomography: a review. Semin Nucl Med 38(3):167–176. doi:10.1053/j.semnuclmed.2008.01.002

    Article  Google Scholar 

  • Picard Y, Thompson CJ (1997) Motion correction of PET images using multiple acquisition frames. IEEE Trans Med Imaging 16(2):137–144. doi:10.1109/42.563659

    Article  Google Scholar 

  • Pluim JPW, Maintz JBA, Viergever MA (2003) Mutual-information-based registration of medical images: a survey. IEEE Trans Med Imaging 22(8):986–1004. doi:10.1109/TMI.2003.815867

    Article  Google Scholar 

  • Raghunath N, Faber TL, Suryanarayanan S, Votaw JR (2009) Motion correction of PET brain images through deconvolution: II. Practical implementation and algorithm optimization. Phys Med Biol 54(3):813–829. doi:10.1088/0031-9155/54/3/022

    Article  Google Scholar 

  • Rahmim A, Rousset O, Zaidi H (2007) Strategies for motion tracking and correction in PET. PET Clin 2(2):251–266. doi:10.1016/j.cpet.2007.08.002

    Article  Google Scholar 

  • Sachs TS, Meyer CH, Hu BS, Kohli J, Nishimura DG, Macovski A (1994) Real-time motion detection in spiral MRI using navigators. Magn Reson Med 32(5):639–645. doi:10.1002/mrm.1910320513

    Article  Google Scholar 

  • Thie JA (2004) Understanding the standardized uptake value, its methods, and implications for usage. J Nucl Med 45(9):1431–1434

    Google Scholar 

  • Thielemans K, Mustafovic S, Schnorr L (2003) Image reconstruction of motion corrected sinograms. IEEE Nucl Sci Symp Conf Rec 4:2401–2406. doi:10.1109/NSSMIC.2003.1352379

    Google Scholar 

  • van den Hoff J (2005) Principles of quantitative positron emission tomography. Amino Acids 29(4):341–353. doi:10.1007/s00726-005-0215-8

    Article  MathSciNet  Google Scholar 

  • Wang Y, Rossman PJ, Grimm RC, Riederer SJ, Ehman RL (1996) Navigator-echo-based real-time respiratory gating and triggering for reduction of respiration effects in three-dimensional coronary MR angiography. Radiology 198(1):55–60

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

van den Hoff, J., Langner, J. (2012). Motion Compensation in Emission Tomography. In: Grupen, C., Buvat, I. (eds) Handbook of Particle Detection and Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13271-1_40

Download citation

Publish with us

Policies and ethics