Skip to main content

Calcium Phosphate–Derived Biomaterials

  • Reference work entry
Encyclopedia of Biophysics

Introduction

Although bone tissue possesses the capacity for regenerative growth, the bone repair process is impaired in many clinical and pathological situations. Large bone loss caused by trauma and tumor resection and/or aging, require reconstructive surgery and/or bone regeneration. At present, bone surgeons have three different possibilities when it comes to replacing bone.

Autogenous bone grafts are considered as the gold standard for bone replacement, in spite of large pain, septic complications, limited amount harvested from the iliac crest or other sites. Allogenic bone grafts obtained from tissue banks also have limitations because of the possible transmission of nonconventional agents or viruses and the risk of immunological incompatibility

Alloplastic Bone substitutes are produced in various compositions and shapes (Fig. 1). These biomaterials can be used alone to fill bone cavities, serving as a scaffold for bone regeneration from the peri-implant region. Bone substitutes...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CaP:

Calcium Phosphate

HA:

Hydroxyapatite

CHA:

Carbonated Hydroxyapatite

TCP:

Tricalcium Phosphate

BCP:

Biphasic Calcium Phosphate

MBCP:

Micro Macroporous Biphasic Calcium Phosphate

References

  • Albee FH. Studies in bone growth: triple calcium phosphate as a stimulus for osteogenesis. Ann Surg. 1920;71:32–6.

    CAS  PubMed  Google Scholar 

  • Basu B, Nath S. Fundamentals of biomaterials and biocompatibility. In: Basu B, Katti DS, Kumar A, editors. Advanced biomaterials: fundamentals, processing, and applications. New York: Wiley; 2009. p. 53–140.

    Google Scholar 

  • Bohner M. Bioresorbable ceramics. In: Buchannan F, editor. Degradation rate of bioresorbale materials, prediction and evaluation. Cambridge: Woodhead Publishing Materials; 2008. p. 95–114.

    Google Scholar 

  • Cho DY, Lee WY, Sheu PC, Chen CC. Cage containing a biphasic calcium phosphate ceramic (triosite) for the treatment of cervical spondylosis. Surg Neurol. 2005;63:497–503.

    PubMed  Google Scholar 

  • Daculsi G. Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute. Biomaterials. 1998;19:1473–8.

    CAS  PubMed  Google Scholar 

  • Daculsi G, Dard M. Bone-calcium-phosphate ceramic interface. Osteosynth Intern. 1994;2:153–6.

    Google Scholar 

  • Daculsi G, LeGeros RZ. Tricalciumphosphate/hydroxyapatite biphasic calcium phosphate (BCP) bioceramics. In: Kokubo T, editor. Bioceramics and theirs clinical applications. Cambridge: Woodhead publishing; 2008. p. 395–424.

    Google Scholar 

  • Daculsi G, LeGeros RZ, Heugheaert M, Barbieux I. Formation of carbonate apatite crystals after implantation of calcium phosphate ceramics. Calcif Tissue Int. 1990;46(20):27.

    Google Scholar 

  • Daculsi G, Legeros RZ, Grimandi G, Soueidan A, Aguado E, Goyenvalle E, Legeros J. Effect of sintering process on microporosity and bone growth on biphasic calcium phosphate ceramics. Key Eng Mater. 2008;361–363:1139–42.

    Google Scholar 

  • Daculsi G, Jegoux F, Layrolle P. The micro macroporous biphasic calcium phosphate concept for bone reconstruction and tissue engineering. In: Basu B, Katti DS, Kumar A, editors. Advanced biomaterials: fundamentals, processing, and applications. New York: Wiley; 2009. p. 101–41.

    Google Scholar 

  • Daculsi G, Uzel AP, Weiss P, Goyenvalle E, Aguado E. Developments in injectable multiphasic biomaterials. The performance of microporous biphasic calcium phosphate granules and hydrogels. J Mater Sci Mater Med. 2010;3:855–61.

    Google Scholar 

  • De Groot KD. Ceramics of calcium phosphate: preparation and properties. In: Groot KD, editor. Bioceramics of calcium phosphate. Boca Raton: CRC Press; 1983. p. 100–14.

    Google Scholar 

  • De Santis R, Guarino V, Ambrosio L. Composite biomaterials for bone repair. In: Planell JA, editor. Bone repair biomaterials. Campbridge: Woodhead Publishing; 2009. p. 252–70.

    Google Scholar 

  • Dorozhkin SV. Calcium orthophosphates as bioceramics: state of the art. J Funct Biomater. 2010;1:22–107.

    CAS  Google Scholar 

  • Ducheyne P, Marcolongco M, Schepers E. Bioceramic composites. In: Hench LL, Wilson J, editors. An introduction to bioceramics. London: World Scientific; 1993. p. 281–97.

    Google Scholar 

  • Gauthier O, Bouler JM, Aguado E, Legeros RZ, Pilet P, Daculsi G. Elaboration conditions influence physico chemical properties and in vivo bioactivity of macroporous biphasic calcium phosphate bioceramics. J Mat Sci Mat In Med. 1999;10:199–204.

    CAS  Google Scholar 

  • Ginebra MP. Cements as bone repair materials. In: Planell JA, editor. Bone repair biomaterials. Cambridge: Woodhead Publishing; 2009. p. 271–308.

    Google Scholar 

  • Habibovic P, Gbureck U, Doillon CJ, Baset DC, Van Blitterswijk CA, Barralet JE. Osteoconduction and osteoinduction of low temperature 3D printed bioceramic implants. Biomaterials. 2008;29:944–53.

    CAS  PubMed  Google Scholar 

  • LeGeros RZ. Calcium phosphates in oral biology and medicine, Oral Sciences. Basel: S. Karger; 1991.

    Google Scholar 

  • LeGeros RZ, Daculsi G. The in vivo behaviour of biphasic calcium phosphate. Histological, ultrastructural and physico chemical characterization. Amsterdam: CRC Press; 1990.

    Google Scholar 

  • Legeros RZ, Daculsi G, Legeros J. Bioactive bioceramics, orthopaedic biology and medicine: musculoskeletal regeneration. In: Pietrazak WS, editor. Biological materials and methods. Totowa: Humana Press; 2009a. p. 153–81.

    Google Scholar 

  • LeGeros RZ, Ito A, Ishikawa K, Sakae T, LeGeros J. Fundamentals of Hydroxyapatite and related calcium phosphate. In: Basu B, Katti DS, Kumar A, editors. Advanced biomaterials: fundamentals, processing, and applications. New York: Wiley; 2009b. p. 19–52.

    Google Scholar 

  • Le Nihouannen D, Daculsi G, Saffarzadeh A, Gauthier O, Delplace S, Pilet P, Layrolle P. Ectopic bone formation by microporous calcium phosphate ceramic particles in sheep muscles. Bone. 2005;36:1086–93.

    PubMed  Google Scholar 

  • Nath S, Basu B. Materials for orthopaedic applications. In: Basu B, Katti DS, Kumar A, editors. Advanced biomaterials: fundamentals, processing, and applications. New York: Wiley; 2009. p. 53–140.

    Google Scholar 

Download references

Acknowledgment

The authors thanks all the collaborators involved in the studies cited performed in Nantes University and INSERM EMI 99 03, Nantes Hospital, Nantes Microscopy SC3M department, and New York University College of Dentistry. This study was supported by FP7 framework EU program GAMBA NMP-2009-2.3-1

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Daculsi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 European Biophysical Societies' Association (EBSA)

About this entry

Cite this entry

Daculsi, G., Miramond, T. (2013). Calcium Phosphate–Derived Biomaterials. In: Roberts, G.C.K. (eds) Encyclopedia of Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16712-6_698

Download citation

Publish with us

Policies and ethics