Skip to main content

Combinatorics: Chemistry with Big Numbers

  • Reference work entry
Drug Design

Abstract

The search for new lead structures and the optimization of their activity profile by systematic modification belong to the time- and cost-demanding steps in drug research. The optimization of a small organic molecule can serve as an example. Even if the number of different groups per position is limited to relatively few, in the case of the multisubstituted tetrahydroisoquinoline carboxylic acid amide 11.1 (Fig. 11.1) several million structures are possible. The combinatorial explosion of all imaginable substitution possibilities can no longer be realized with classical chemical techniques. The diversity increases even more when the different stereoisomers are considered. Their number is already considerably larger than the number of all of the compounds referenced in Chemical Abstracts (33 million) or in Beilstein (10 million compounds).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

General Literature

  • Balkenhohl F, von dem Bussche-Hünnefeld C, Lansky A, Zechel C (1996) Combinatorial synthesis of small organic molecules. Angew Chem Int Ed Engl 35:2288–2337

    Article  CAS  Google Scholar 

  • Bannwarth W, Hinzen B (2006) Combinatorial chemistry. From theory to application. In: Mannhold R, Kubinyi H (eds) Methods and principles in medicinal chemistry, 26th edn. Wiley-VCH, Weinheim

    Google Scholar 

  • Baum RM (1994) Combinatorial approaches provide fresh leads for medicinal chemistry. Chem Eng News 72:20–26

    Article  Google Scholar 

  • Beck-Sickinger AG, Weber P (2002) Combinatorial strategies in biology and chemistry. Wiley, Weinheim

    Google Scholar 

  • Bunin BA (1998) The combinatorial index. Academic, San Diego

    Google Scholar 

  • Gallop MA, Barrett RW, Dower WJ, Fodor SPA, Gordon EM (1994) Applications of combinatorial technologies to drug discovery. 1. Background and peptide combinatorial libraries. J Med Chem 37:1233–1251

    Article  PubMed  CAS  Google Scholar 

  • Gordon EM, Barrett RW, Dower WJ, Fodor SPA, Gallop MA (1994) Applications of combinatorial technologies to drug discovery. 2. Combinatorial organic synthesis, library screening strategies, and future directions. J Med Chem 37:1385–1401

    Article  PubMed  CAS  Google Scholar 

  • Jung G (1999) Combinatorial chemistry. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Jung G, Beck-Sickinger AG (1992) Multiple peptide synthesis methods and their applications. New synthetic methods. Angew Chem Int Ed Engl 31:367–383

    Article  Google Scholar 

  • Kay BK (1994) Biologically displayed random peptides as reagents in mapping protein–protein interactions. Persp Drug Discov Design 2:251–268

    Article  Google Scholar 

  • Kolb HC, Finn MG, Barry Sharpless K (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed Engl 40:2004–2021

    Article  PubMed  CAS  Google Scholar 

  • Ley SV, Baxendale IR (2002) New tools and concepts for modern organic synthesis. Nat Rev Drug Discov 1:573–586

    Article  PubMed  CAS  Google Scholar 

  • Madden D, Krchnak V, Lebl M (1994) Synthetic combinatorial libraries: views on techniques and their application. Persp Drug Discov Design 2:269–285

    Article  Google Scholar 

  • Moos WH, Green GD, Pavia MR (1993) Recent advances in the generation of molecular diversity. Annu Rep Med Chem 28:315–324

    Article  CAS  Google Scholar 

  • Nicolaou KC, Hanko R, Hartwig W (2002) Handbook of combinatorial chemistry. Drugs, catalysts, materials. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Ramström O, Lehn J-M (2002) Drug discovery by dynamic combinatorial libraries. Nat Rev Drug Discov 1:27–36

    Article  Google Scholar 

  • Seneci P (2000) Solid-phase synthesis and combinatorial technologies. Wiley-Interscience, New York

    Book  Google Scholar 

Special Literature

  • Bourne Y, Kolb HC, Radic Z, Sharpless KB, Taylor P, Marchot P (2004) Freeze-frame inhibitor captures acetylcholinesterase in a unique conformation. Proc Natl Acad Sci 110:1449–1454

    Article  Google Scholar 

  • Carell T, Wintner EA, Sutherland AJ, Rebek J, Dunayevskiy YM, Vouros P (1995) New promise in combinatorial chemistry: synthesis, characterization, in screening of small-molecule libraries in solution. Chem Biol 2:171–183

    Article  PubMed  CAS  Google Scholar 

  • Dooley CT, Chung NN, Schiller PW, Houghton RA (1993) Acetalins: opioid receptor antagonists determined through the use of synthetic peptide combinatorial libraries. Proc Natl Acad Sci USA 90:10811–10815

    Article  PubMed  CAS  Google Scholar 

  • Fink T, Reymond J-L (2007) Virtual exploration of the chemical universe up to 11 atoms of C, N, O, F: assembly of 26.4 million structures (110.9 million stereoisomers) and analysis for new ring systems, stereochemistry, physicochemical properties, compound classes, and drug discovery. J Chem Inf Model 47:342–353

    Article  PubMed  CAS  Google Scholar 

  • Geysen HM, Meloen R, Barteling S (1984) Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc Natl Acad Sci USA 81:3998–4002

    Article  PubMed  CAS  Google Scholar 

  • Murphy MM, Schullek JR, Gordon EM, Gallop MA (1995) Combinatorial organic synthesis of highly functionalized pyrrolidines: identification of a potent angiotensin converting enzyme inhibitor from a mercaptoracyl proline library. J Am Chem Soc 117:7029–7030

    Article  CAS  Google Scholar 

  • Zuckermann RN, Martin EJ, Spellmeyer DC et al (1994) Discovery of nanomolar ligands for 7-transmembrane G-protein- coupled receptors from a diverse N-(substituted)glycine peptoid library. J Med Chem 37:2678–2685

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Klebe, G. (2013). Combinatorics: Chemistry with Big Numbers. In: Klebe, G. (eds) Drug Design. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17907-5_11

Download citation

Publish with us

Policies and ethics