Skip to main content

Periodic Solutions of Non-autonomous Ordinary Differential Equations

  • Living reference work entry
  • First Online:
Encyclopedia of Complexity and Systems Science
  • 218 Accesses

Definition of the Subject

Many phenomena in nature can be modeled by systems of ordinary differential equations which depend periodically upon time. For example, a linear or nonlinear oscillator can be forced by a periodic external force, and an important question is to know if the oscillator can exhibit a periodic response under this forcing. This question originated from problems in classical and celestial mechanics, before receiving important applications in radioelectricity and electronics. Nowadays, it also plays a great role in mathematical biology and population dynamics, as well as in mathematical economics, where the considered systems are often subject to seasonal variations. The general theory originated with Henri Poincaré’s work in celestial mechanics, at the end of the nineteenth century and has been constantly developed since.

Introduction

To motivate the problem and its difficulties, let us start with the simple linear oscillator with forcing (or input) hL...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Banach fixed point theorem:

If M is a complete metric space with distance d and f : MM is contractive, i.e., d(f(u), f(v)) ≤ αd(u, v) for some α ∈ [0, 1) and all u, vM, then f has a unique fixed point u* and u* = lim k → ∞ f k(u 0) for any u 0M

Brouwer degree:

An integer d B [f, Ω] which “algebraically” counts the number of zeros of any continuous mapping \( f:\overline{\Omega}\subset {\mathrm{\mathbb{R}}}^n\to {\mathrm{\mathbb{R}}}^n \) such that 0 ∉ f(∂Ω) and is invariant for sufficiently small perturbations of f. If f is of class C 1 and its zeros are nondegenerate, then \( {d}_B\left[f,\Omega \right]={\displaystyle \sum_{x\in {f}^{-1}(0)}\mathrm{sign}\kern1em \det {f}^{\prime }(x)} \)

Brouwer fixed point theorem:

Any continuous mapping f : BB, with B homeomorphic to the closed unit ball in ℝn, has at least one fixed point

Leray-Schauder degree:

The extension d LS [Ig, Ω] of the Brouwer degree, where Ω is an open bounded subset of the Banach space X, and \( g:\overline{\Omega}\to X \) is continuous, \( g\left(\overline{\Omega}\right) \) is relatively compact, and 0 ∉ (Ig)(∂Ω) is Leray-Schauder-Schaefer fixed point theorem. If X is a Banach space, g : XX is a continuous mapping taking bounded subsets into relatively compact ones, and if the set of possible fixed points of εg(ε ∈ [0, 1]) is bounded independently of ε, then g has at least one fixed point

Lusternik -Schnirelmann category:

The Lusternik-Schnirelmann category cat (M) of a metric space M into itself is the smallest integer k such that M can be covered by k sets contractible in M

Lower and upper solutions:

A lower (resp. upper) solution of the periodic problem u″ = f(t, u), u(0) = u(T), u′(0) = u′(T) is a function α (resp. β) of class C 2 such that α″(t) ≥ f(t, α(t)), α(0) = α(T), α′(0) ≥ α′(T)(resp. β″(t) ≤ f(t, β(t)), β(0) = β(T), β′(0) ≤ β′(T))

Palais-Smale condition for a C 1 function φ : X → ℝ:

Any sequence (u k ) k ∈ ℕ such that (φ(u k )) k ∈ ℕ is bounded and lim k → ∞ φ′(u k ) = 0 contains a convergent subsequence

Poincaré operator:

The mapping defined in ℝn by P T : yp(T; y), where p(t;y) is the unique solution of the Cauchy problem x′ = f(t, x), x(0) = y.

Schauder fixed point theorem:

If C is a closed bounded convex subset of a Banach space X, any continuous mapping g : CC such that g(C) is relatively compact has at least one fixed point

Sobolev inequality:

For any function uL 2(0, T) such that u′ ∈ L 2(0, T) and \( {\displaystyle {\int}_0^T} \) u(t)dt = 0, one has \( \underset{t\in \left[0,T\right]}{ \max}\left|u(t)\right|\le \left({T}^{1/2}/2\sqrt{3}\right){\left[{\displaystyle {\int}_0^T{\left|{u}^{\mathit{\prime}}(t)\right|}^2\mathrm{d}t}\right]}^{1/2} \)

Wirtinger inequality:

For any function uL 2(0, T) such that u′ ∈ L 2(0, T) and \( {\displaystyle {\int}_0^T} \) u(t)dt = 0, one has \( {\displaystyle {\int}_0^T} \)|u(t)|2dt ≤ (T 2/4π 2) \( {\displaystyle {\int}_0^T} \)|u′(t)|2dt

Bibliography

Primary Literature

  • Ahmad S, Lazer AC, Paul JL (1976) Elementary critical point theory and perturbations of elliptic boundary value problems. Indiana Univ Math J 25:933–944

    Article  MATH  MathSciNet  Google Scholar 

  • Alonso JM, Ortega R (1996) Unbounded solutions of semilinear equations at resonance. Nonlinearity 9:1099–1111

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Amann H, Ambrosetti A, Mancini G (1978) Elliptic equations with noninvertible Fredholm linear part and bounded nonlinearities. Math Z 158:179–194

    Article  MATH  MathSciNet  Google Scholar 

  • Ambrosetti A, Prodi G (1972) On the inversion of some differentiable mappings with singularities between Banach spaces. Ann Mat Pura Appl 93(4):231–246

    Article  MATH  MathSciNet  Google Scholar 

  • Bartsch T, Mawhin J (1991) The Leray-Schauder degree of S 1-equivariant operators associated to autonomous neutral equations in spaces of periodic functions. J Differ Equ 92:90–99

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Campos J, Ortega R (1996) Nonexistence of periodic solutions of a complex Riccati equation. Differ Integr Equ 9:247–249

    MATH  MathSciNet  Google Scholar 

  • Capietto A, Mawhin J, Zanolin F (1992) Continuation theorems for periodic perturbations of autonomous systems. Trans Amer Math Soc 329:41–72

    Article  MATH  MathSciNet  Google Scholar 

  • Capietto A, Mawhin J, Zanolin F (1995) A continuation theorem for periodic boundary value problems with oscillatory nonlinearities. Nonlinear Differ Equ Appl 2:133–163

    Article  MATH  MathSciNet  Google Scholar 

  • Chang KC (1989) On the periodic nonlinearity and the multiplicity of solutions. Nonlinear Anal 13:527–537

    Article  MATH  MathSciNet  Google Scholar 

  • Chang KC (1993) Infinite dimensional Morse theory and multiple solution problems. Birkhäuser, Basel

    Book  MATH  Google Scholar 

  • Conley C, Zehnder E (1984) Morse type index for flows and periodic solutions for Hamiltonian operator. Comm Pure Appl Math 37:207–253

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Dancer EN (1982) On the use of asymptotics in nonlinear boundary value problems. Ann Mat Pura Appl 131(4):67–187

    MathSciNet  Google Scholar 

  • Dancer EN, Ortega R (1994) The index of Lyapunov stable fixed points in two dimensions. J Dyn Differ Equ 6:631–637

    Article  MATH  MathSciNet  Google Scholar 

  • Dolph CL (1949) Nonlinear integral equations of Hammerstein type. Trans Amer Math Soc 66:289–307

    Article  MATH  MathSciNet  Google Scholar 

  • Duffing G (1918) Erzwungene Schwingungen bei veränderlicher Eigenfrequenz. Vieweg, Braunschweig

    MATH  Google Scholar 

  • Fabry C, Mawhin J, Nkashama M (1986) A multiplicity result for periodic solutions of forced nonlinear second order differential equations. Bull Lond Math Soc 18:173–180

    Article  MATH  MathSciNet  Google Scholar 

  • Fabry C, Mawhin J (2000) Oscillations of a forced asymmetric oscillator at resonance. Nonlinearity 13:493–505

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Fučik S (1976) Boundary value problems with jumping nonlinearities. Časopis Pest Mat 101:69–87

    MATH  Google Scholar 

  • Hamel G (1922) Ueber erzwungene Schwingungen bei endlichen Amplituden. Math Ann 86:1–13

    Article  MATH  MathSciNet  Google Scholar 

  • Kazdan JL, Warner FW (1975) Remarks on some quasilinear elliptic equations. Comm Pure Appl Math 28:567–597

    Article  MATH  MathSciNet  Google Scholar 

  • Knobloch HW (1963) Eine neue Methode zur Approximation periodischer Lösungen von Differentialgleichungen zweiter Ordnung. Math Z 82:177–197

    Article  MATH  MathSciNet  Google Scholar 

  • Krasnosel’skii MA (1968) The operator of translation along the trajectories of differential equations. American Mathematical Society, Providence

    Google Scholar 

  • Lazer AC, Leach DE (1969) Bounded perturbations for forced harmonic oscillators at resonance. Ann Mat Pura Appl 82(4):49–68

    Article  MATH  MathSciNet  Google Scholar 

  • Lefschetz S (1943) Existence of periodic solutions of certain differential equations. Proc Natl Acad Sci U S A 29:29–32

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Levinson N (1943) On the existence of periodic solutions for second order differential equations with a forcing term. J Math Phys 22:41–48

    MATH  MathSciNet  Google Scholar 

  • Lichtenstein L (1915) Ueber einige Existenzprobleme der Variationsrechnung. J Reine Angew Math 145:24–85

    Google Scholar 

  • Ljusternik L, Schnirelmann L (1934) Méthodes topologiques dans les problèmes variationnels. Hermann, Paris

    Google Scholar 

  • Lloyd NG (1975) On a class of differential equations of Riccati type. J Lond Math Soc 10(2):1–10

    Article  MATH  MathSciNet  Google Scholar 

  • Massera JL (1950) The existence of periodic solutions of systems of differential equations. Duke Math J 17:457–475

    Article  MATH  MathSciNet  Google Scholar 

  • Mawhin J (1969) Équations intégrales et solutions périodiques de systèmes différentiels non linéaires. Bull Cl Sci Acad Roy Belgique 55(5):934–947

    ADS  MATH  MathSciNet  Google Scholar 

  • Mawhin J (1976) Contractive mappings and periodically perturbed conservative systems. Arch Math (Brno) 12:67–73

    ADS  MATH  MathSciNet  Google Scholar 

  • Mawhin J (1979) Topological degree and nonlinear boundary value problems. CBMS Conf Math No 40. Amer Math Soc, Providence

    Google Scholar 

  • Mawhin J (1983) Points fixes, points critiques et problèmes aux limites. Sémin Math Supérieures No 92. Presses Univ de Montréal, Montréal

    Google Scholar 

  • Mawhin J (1989) Forced second order conservative systems with periodic nonlinearity. Ann Inst Henri Poincaré Anal non linéaire 6:415–434

    MATH  MathSciNet  Google Scholar 

  • Mawhin J (1994) Periodic solutions of some planar non-autonomous polynomial differential equations. Differ Integr Equ 7:1055–1061

    MATH  MathSciNet  Google Scholar 

  • Mawhin J (2004) Global results for the forced pendulum equation. In: Cañada A, Drabek P, Fonda A (eds) Handbook of differential equations. Ordinary differential equations, vol 1. Elsevier, Amsterdam, pp 533–590

    Chapter  Google Scholar 

  • Mawhin J, Ward JR (2002) Guiding-like functions for periodic or bounded solutions of ordinary differential equations. Discret Continuous Dyn Syst 8:39–54

    MATH  MathSciNet  Google Scholar 

  • Mawhin J, Willem M (1984) Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations. J Differ Equ 52:264–287

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Mawhin J, Willem M (1989) Critical point theory and Hamiltonian systems. Springer, New York

    Book  MATH  Google Scholar 

  • Ortega R (1995) Some applications of the topological degree to stability theory. In: Granas A, Frigon M (eds) Topological methods in differential equations and inclusions, NATO ASI C472. Kluwer, Amsterdam, pp 377–409

    Chapter  Google Scholar 

  • Palais R (1966) Ljusternik-Schnirelmann theory on Banach manifolds. Topology 5:115–132

    Article  MATH  MathSciNet  Google Scholar 

  • Palais R, Smale S (1964) A generalized Morse theory. Bull Am Math Soc 70:165–171

    Article  MATH  MathSciNet  Google Scholar 

  • Poincaré H (1892) Les méthodes nouvelles de la mécanique céleste, vol 1. Gauthier-Villars, Paris

    Google Scholar 

  • Rabinowitz P (1978) Some minimax theorems and applications to nonlinear partial differential equations. In: Cesari L, Kannan R, Weinberger H (eds) Nonlinear analysis, a tribute to E. Rothe. Academic, New York

    Google Scholar 

  • Rabinowitz P (1988) On a class of functionals invariant under a -action. Trans Am Math Soc 310:303–311

    MATH  MathSciNet  Google Scholar 

  • Reissig R (1964) Ein funktionenanalytischer Existenzbeweis für periodische Lösungen. Monatsber Deutsche Akad Wiss Berlin 6:407–413

    MATH  MathSciNet  Google Scholar 

  • Scorza Dragoni G (1931) Il problema dei valori ai limite studiate in grande per le equazione differenziale del secondo ordine. Math Ann 105:133–143

    Article  MathSciNet  Google Scholar 

  • Srzednicki R (1994) On periodic planar solutions of planar polynomial differential equations with periodic coefficients. J Differ Equ 114:77–100

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Stoppelli F (1952) Su un'equazione differenziale della meccanica dei fili. Rend Accad Sci Fis Mat Napoli 19(4):109–114

    MathSciNet  Google Scholar 

  • Villari G (1965) Contributi allo studio dell'esistenzadi soluzioni periodiche per i sistemi di equazioni differenziali ordinarie. Ann Mat Pura Appl 69(4):171–190

    Article  MATH  MathSciNet  Google Scholar 

  • Willem M (1981) Oscillations forcées de systèmes hamiltoniens. Publications du Séminaire d'Analyse non linéaire, Univ Besançon

    Google Scholar 

Books and Reviews

  • Bobylev NA, Burman YM, Korovin SK (1994) Approximation procedures in nonlinear oscillation theory. de Gruyter, Berlin

    Book  MATH  Google Scholar 

  • Bogoliubov NN, Mitropolsky YA (1961) Asymptotic methods in the theory of nonlinear oscillations. Gordon and Breach, New York

    Google Scholar 

  • Cesari L (1971) Asymptotic behavior and stability problems for ordinary differential equations, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  • Coddington EA, Levinson N (1955) Ordinary differential equations. McGraw-Hill, New York

    MATH  Google Scholar 

  • Cronin J (1964) Fixed points and topological degree in nonlinear analysis. American Mathematical Society, Providence

    MATH  Google Scholar 

  • Ekeland I (1990) Convexity methods in Hamiltonian mechanics. Springer, Berlin

    Book  MATH  Google Scholar 

  • Farkas M (1994) Periodic motions. Springer, New York

    Book  MATH  Google Scholar 

  • Gaines RE, Mawhin J (1977) Coincidence degree and nonlinear differential equations. Lecture notes in mathematics, vol 568. Springer, Berlin

    Google Scholar 

  • Hale JK (1969) Ordinary differential equations. Wiley Interscience, New York

    MATH  Google Scholar 

  • Mawhin J (1993) Topological degree and boundary value problems for nonlinear differential equations. Lecture notes in mathematics, vol 1537. Springer, Berlin, pp 74–142

    Google Scholar 

  • Mawhin J (1995) Continuation theorems and periodic solutions of ordinary differential equations. In: Granas A, Frigon M (eds) Topological methods in differential equations and inclusions, NATO ASI C472. Kluwer, Amsterdam, pp 291–375

    Chapter  Google Scholar 

  • Pliss VA (1966) Nonlocal problems of the theory of oscillations. Academic, New York

    MATH  Google Scholar 

  • Rabinowitz P (1986) Minimax methods in critical point theory with applications to differential equations. CBMS Reg Conf Ser Math No 65. Amer Math Soc, Providence

    Google Scholar 

  • Reissig R, Sansone G, Conti R (1963) Qualitative Theorie nichtlinearer Differentialgleichungen. Cremonese, Roma

    Google Scholar 

  • Reissig R, Sansone G, Conti R (1974) Nonlinear differential equations of higher order. Noordhoff, Leiden

    Google Scholar 

  • Rouche N, Mawhin J (1980) Ordinary differential equations. Stability and periodic solutions. Pitman, Boston

    MATH  Google Scholar 

  • Sansone G, Conti R (1964) Non-linear differential equations. Pergamon, Oxford

    MATH  Google Scholar 

  • Verhulst F (1996) Nonlinear differential equations and dynamical systems, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Mawhin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Mawhin, J. (2013). Periodic Solutions of Non-autonomous Ordinary Differential Equations. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-3-642-27737-5_392-3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_392-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics