Skip to main content

Stochastic Processes

  • Living reference work entry
  • First Online:
Encyclopedia of Complexity and Systems Science
  • 191 Accesses

Definition of the Subject

The most common type of stochastic process comprises of a set of random variables {x(t)}, where t represents the time which may be real or integer valued. Other types of stochastic process are possible, for instance when the stochastic variable depends on the spatial position r, as well as, or instead of, t. Since in the study of complex systems we will predominantly be interested in applications relating to stochastic dynamics, we will suppose that it depends only on t. One of the earliest investigations of a stochastic process was carried out by Bachelier (1900), who used the idea of a random walk to analyze stock market fluctuations. The problem of a random walk was more generally discussed by Pearson (1905) and applied to the investigation of Brownian motion by Einstein (1905, 1906), Smoluchowski (1906) and Langevin (1908). The example of a random walk illustrates the fact that in addition to time being discrete or continuous, the stochastic variable...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Fokker-Planck equation:

A partial differential equation of the second order for the time evolution of the probability density function of a stochastic process. It resembles a diffusion equation, but has an extra term that represents the deterministic aspects of the process.

Langevin equation:

A stochastic differential equation of the simplest kind: linear and with an additive Gaussian white noise. Introduced by Langevin (1908) in 1908 to describe Brownian motion; many stochastic differential equations in physics go by this name.

Markov process:

A stochastic process in which the current state of the system is only determined from its state in the immediate past, and not by its entire history.

Markov chain:

A Markov process where both the states and the time are discrete and where the process is stationary.

Master equation:

The equation describing a continuous-time Markov chain.

Stochastic process:

A sequence of stochastic variables. This sequence is usually a time-sequence, but could also be spatial.

Stochastic variable:

A random variable. This is a function that maps outcomes to numbers (real or integer).

Bibliography

Primary Literature

  • Abramowitz M, Stegun I (eds) (1965) Handbook of mathematical functions. Dover, New York

    Google Scholar 

  • Bachelier L (1900) Théorie de la spéculation. Ann Sci L’Ecole Normale Supérieure III 17:21–86

    MathSciNet  MATH  Google Scholar 

  • Cao Y, Li H, Petzold L (2004) Efficient formulation of the stochastic simulation algorithm for chemically reacting systems. J Chem Phys 121:4059–4067

    Article  ADS  Google Scholar 

  • Chandrasekhar S (1943) Stochastic problems in physics and astronomy. Rev Mod Phys 15:1–89. Reprinted in Wax (1954)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Cox DR, Miller HD (1968) The theory of stochastic processes, Chap 3. Chapman and Hall, London

    Google Scholar 

  • Crow JF, Kimura M (1970) An introduction to population genetics theory. Harper and Row, New York

    MATH  Google Scholar 

  • Ehrenfest P, Ehrenfest T (1907) Über zwei bekannte Einwände gegen das Boltzmannsche H-Theorem. Phys Z 8:311–314

    MATH  Google Scholar 

  • Einstein A (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Physik 17:549–560. For a translation see: Einstein A, “Investigations on the Theory of the Brownian Movement” Fürth R (ed), Cowper AD (tr) (Dover, New York, 1956). Chapter I

    Article  ADS  MATH  Google Scholar 

  • Einstein A (1906) Zur Theorie der Brownschen Bewegung. Ann Physik 19:371–381, For a translation see: Einstein A, “Investigations on the Theory of the Brownian Movement” Fürth R (ed), Cowper AD (tr) (Dover, New York, 1956). Chapter II

    Article  ADS  MATH  Google Scholar 

  • Feller W (1968) An introduction to probability theory and its applications, 3rd edn. Wiley, New York, Chap XV

    MATH  Google Scholar 

  • Feynman RP (1948) Space-time approach to non-relativistic quantum mechanics. Rev Mod Phys 20:367–387

    Article  ADS  MathSciNet  Google Scholar 

  • Feynman RP, Hibbs AR (1965) Quantum mechanics and path integrals. McGraw-Hill, New York, Chap 12

    MATH  Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. Clarendon Press, Oxford

    Book  MATH  Google Scholar 

  • Fokker AD (1914) Die mittlere Energie rotierende elektrischer Dipole im Strahlungsfeld. Ann Physik 43:810–820

    Article  ADS  Google Scholar 

  • Gantmacher FR (1959) The theory of matrices, vol 2. Chelsea Publishing, New York, Chap 13, Sect 6

    MATH  Google Scholar 

  • Gardiner CW (2004) Handbook of stochastic methods, 3rd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  • Gillespie DT (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comput Phys 22:403–434

    Article  ADS  MathSciNet  Google Scholar 

  • Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81:2340–2361

    Article  Google Scholar 

  • Gillespie DT (2001) Approximate accelerated stochastic simulation of chemically reacting systems. J Chem Phys 115:1716–1733

    Article  ADS  Google Scholar 

  • Graham R (1975) Macroscopic theory of fluctuations and instabilities. In: Riste T (ed) Fluctuations, instabilities, and phase transitions. Plenum, New York, pp 215–293

    Chapter  Google Scholar 

  • Graham R (1977) Path integral formulation of general diffusion processes. Z Physik B26:281–290

    Article  ADS  Google Scholar 

  • Haken H (1983) Synergetics. Springer, Berlin, Sect 6.3

    Book  MATH  Google Scholar 

  • Kac M (1947) Random walk and the theory of Brownian motion. Am Math Mon 54:369–391

    Article  MathSciNet  MATH  Google Scholar 

  • Karlin S, McGregor J (1964) On some stochastic models in genetics. In: Gurland J (ed) Stochastic problems in medicine and biology. University of Wisconsin Press, Madison, pp 245–279

    Google Scholar 

  • Kendall DG (1948) On some modes of population growth leading to R. A Fisher’s logarithmic series distribution. Biometrika 35:6–15

    Article  MathSciNet  MATH  Google Scholar 

  • Kolmogorov AN (1931) Über die analytischen Methoden in der Wahrscheinlichkeitsrechung. Math Ann 104:415–458

    Article  MathSciNet  Google Scholar 

  • Kolmogorov AN (1936) Anfangsgründe der Theorie der Markoffschen Ketten mit unendlich vielen möglichen Zuständen. Mat Sbornik (NS) 1:607–610

    MATH  Google Scholar 

  • Krafft O, Schaefer M (1993) Mean passage times for tridiagonal transition matrices and a two-parameter Ehrenfest urn model. J Appl Prob 30:964–970

    Article  MathSciNet  MATH  Google Scholar 

  • Kramers HA (1940) Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7:284–304

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Langevin P (1908) Sur la théorie du mouvement brownien. C R Acad Sci Paris 146:530–533. For a translation see: Lemons DS, Gythiel A, Am J Phys 65:1079–1081 (1997)

    MATH  Google Scholar 

  • Malécot G (1944) Sur un problème de probabilités en chaine que pose la génétique. C R Acad Sci Paris 219:379–381

    MathSciNet  MATH  Google Scholar 

  • Markov AA (1906) Rasprostranenie zakona bol’shih chisel na velichiny, zavisyaschie drug ot druga. Izv Fiz-Matem Obsch Kazan Univ (Series 2) 15:135–156. See also: “Extension of the limit, theorems of probability theory to a sum of variables connected in a chain”, in Appendix B of R. Howard “Dynamic Probabilistic Systems, vol 1: Markov Chains” (Wiley, 1971)

    Google Scholar 

  • May RM (1973) Model ecosystems. Princeton University Press, Princeton, Chap 5

    Google Scholar 

  • McKane AJ, Newman TJ (2004) Stochastic models in population biology and their deterministic analogs. Phys Rev E 70:041902

    Article  ADS  MathSciNet  Google Scholar 

  • McKane AJ, Newman TJ (2005) Predator–prey cycles from resonant amplification of demographic stochasticity. Phys Rev Lett 94:218102

    Article  ADS  Google Scholar 

  • Moran PAP (1958) Random processes in genetics. Proc Camb Philos Soc 54:60–72

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Moran PAP (1962) The statistical processes of evolutionary theory. Clarendon Press, Oxford, Chap 4

    MATH  Google Scholar 

  • Moyal JE (1949) Stochastic processes and statistical physics. J Roy Stat Soc (London) B 11:150–210

    MathSciNet  MATH  Google Scholar 

  • Nordsieck A, Lamb WE Jr, Uhlenbeck GE (1940) On the theory of cosmic-ray showers. I. The Furry model and the fluctuation problem. Physica 7:344–360

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Onsager L, Machlup S (1953) Fluctuations and irreversible processes. Phys Rev 91:1505–1512

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Pauli W (1928) Probleme der modernen Physik. In: Debye P (ed) Festschrift zum 60. Geburtstag A. Sommerfeld, Hirzel, Leipzig, p 30

    Google Scholar 

  • Pearson K (1905) The problem of the random walk. Nature 72:294,342

    Article  ADS  MATH  Google Scholar 

  • Planck M (1917) Über einen Satz der statistischen Dynamik und seine Erweiterung in der Quantentheorie. Abh Preuss Akad Wiss Berl 24:324–341

    Google Scholar 

  • Rayleigh L (1891) Dynamical problems in illustration of the theory of gases. Phil Mag 32:424–445

    Article  MATH  Google Scholar 

  • Reichl LE (1998) A modern course in statistical physics, 2nd edn. Wiley, New York, Chap 5

    MATH  Google Scholar 

  • Risken H (1989) The Fokker-Planck equation, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  • Schiff LI (1968) Quantum mechanics, 3rd edn. McGraw-Hill, Tokyo, Chap 4

    MATH  Google Scholar 

  • Schulman LS (1981) Techniques and applications of path-integration. Wiley, New York, Chap 5

    MATH  Google Scholar 

  • Siegert AJF (1949) On the approach to statistical equilibrium. Phys Rev 76:1708–1714

    Article  ADS  MATH  Google Scholar 

  • Sneddon IN (1957) Elements of partial differential equations. McGraw-Hill, New York, Chap 2

    MATH  Google Scholar 

  • van Kampen NG (1961) A power series expansion of the master equation. Can J Phys 39:551–567

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • van Kampen NG (1981) Itô versus Stratonovich. J Stat Phys 24:175–187

    Article  ADS  MATH  Google Scholar 

  • van Kampen NG (1992) Stochastic processes in physics and chemistry, 2nd edn. North-Holland, Amsterdam

    MATH  Google Scholar 

  • von Smoluchowski M (1906) Zur kinetishen Theorie der Brownschen Molekularbewegung und der Suspensionen. Ann Physik 21:756–780

    Article  MATH  Google Scholar 

  • von Smoluchowski M (1916) Drei Vortage über Diffusion, Brownsche Bewegung, und Koagulation von Kolloidteilchen. Phys Z 17:571–599

    Google Scholar 

  • Wiener N (1921a) The average of an analytic functional. Proc Natl Acad Sci U S A 7:253–260

    Article  ADS  MATH  Google Scholar 

  • Wiener N (1921b) The average of an analytic functional and the Brownian movement. Proc Natl Acad Sci U S A 7:294–298

    Article  ADS  MATH  Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159

    Google Scholar 

  • Zinn-Justin J (2002) Quantum field theory and critical phenomena, 4th edn. Clarendon Press, Oxford. Sect 4.8.2

    Book  MATH  Google Scholar 

  • Zwanzig R (1973) Nonlinear generalized Langevin equations. J Stat Phys 9:215–220

    Article  ADS  Google Scholar 

Books and Reviews

  • Wax N (1954) Selected papers on noise and stochastic processes. Dover, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan J. McKane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

McKane, A.J. (2015). Stochastic Processes. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_526-3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_526-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics