Skip to main content

Cellular Automaton Models in the Framework of Three-Phase Traffic Theory

  • Living reference work entry
  • First Online:
Encyclopedia of Complexity and Systems Science

Glossary

CA models:

Cellular automata (CA) models are a class of microscopic traffic flow models. In the CA models, the time and space are discrete, and the evolution is described by update rules.

First-order phase transition:

In three-phase traffic theory, the F → S and S → J transitions are claimed to be first-order phase transition, in which the flow rate abrupt decreases.

Fundamental diagram:

Fundamental diagram describes the relationship between flow rate and density. In the empirical data, the flow rate and density are usually collected by loop detector and averaged over 1 min. In the simulation on a circular road, usually the global density vs. averaged flow rate is plotted.

Kerner’s three-phase traffic theory:

In Kerner’s three-phase theory, the congested flow has been further classified into synchronized flow (S) and wide moving jam (J). Therefore, there are three phases in traffic flow, i.e., the free flow (F), synchronized flow, and wide moving jam. The usually observed...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Ahn S, Cassidy MJ (2007) Freeway traffic oscillations and vehicle lane-change maneuvers. In: Proceedings of the transportation and traffic theory, 2007

    Google Scholar 

  • Bando M, Hasebe K, Nakayama A, Shibata A, Sugiyama Y (1995) Dynamical model of traffic congestion and numerical simulation. Phys Rev E 51(2):1035

    Article  ADS  Google Scholar 

  • Barlovic R, Santen L, Schadschneider A, Schreckenberg M (1998) Metastable states in cellular automata for traffic flow. Eur Phys J B-Condens Matter Complex Syst 5(3):793–800

    Article  Google Scholar 

  • Benjamin SC, Johnson NF, Hui PM (1996) Cellular automata models of traffic flow along a highway containing a junction. J Phys A Math Gen 29(12):3119

    Article  ADS  Google Scholar 

  • Brackstone M, McDonald M (1999) Car-following: a historical review. Transport Res F: Traffic Psychol Behav 2(4):181–196

    Article  Google Scholar 

  • Brilon W, Geistefeldt J, Regler M (2005) Reliability of freeway traffic flow: a stochastic concept of capacity. In: Proceedings of the 16th international symposium on transportation and traffic theory

    Google Scholar 

  • Chandler RE, Herman R, Montroll EW (1958) Traffic dynamics: studies in car following. Oper Res 6(2):165–184

    Article  MathSciNet  Google Scholar 

  • Chen D, Laval J, Zheng Z, Ahn S (2012) A behavioral car-following model that captures traffic oscillations. Transp Res B Methodol 46(6):744–761

    Article  Google Scholar 

  • Chen D, Ahn S, Laval J, Zheng Z (2014) On the periodicity of traffic oscillations and capacity drop: the role of driver characteristics. Transp Res B Methodol 59:117–136

    Article  Google Scholar 

  • Chmura T, Herz B, Knorr F, Pitz T, Schreckenberg M (2014) A simple stochastic cellular automaton for synchronized traffic flow. Physica A: Stat Mech Appl 405:332–337

    Article  MathSciNet  Google Scholar 

  • Chowdhury D, Santen L, Schadschneider A (2000) Statistical physics of vehicular traffic and some related systems. Phys Rep 329(4–6):199–329

    Article  ADS  MathSciNet  Google Scholar 

  • Chung K, Rudjanakanoknad J, Cassidy MJ (2007) Relation between traffic density and capacity drop at three freeway bottlenecks. Transp Res B Methodol 41(1):82–95

    Article  Google Scholar 

  • Coifman B, Kim S (2011) Extended bottlenecks, the fundamental relationship, and capacity drop on freeways. Transp Res A Policy Pract 45(9):980–991

    Article  Google Scholar 

  • Daganzo C, Daganzo CF (1997) Fundamentals of transportation and traffic operations, vol 30. Pergamon, Oxford

    Book  Google Scholar 

  • Fukui M, Ishibashi Y (1997) Effect of delay in restarting of stopped cars in a one-dimensional traffic model. J Phys Soc Jpn 66(2):385–387

    Article  ADS  Google Scholar 

  • Gao K, Jiang R, Hu SX, Wang BH, Wu QS (2007) Cellular-automaton model with velocity adaptation in the framework of Kerner’s three-phase traffic theory. Phys Rev E 76(2):026105

    Article  ADS  Google Scholar 

  • Gao K, Jiang R, Wang BH, Wu QS (2009) Discontinuous transition from free flow to synchronized flow induced by short-range interaction between vehicles in a three-phase traffic flow model. Phys A Stat Mech Appl 388(15–16):3233–3243

    Article  Google Scholar 

  • Gazis DC, Herman R, Potts RB (1959) Car-following theory of steady-state traffic flow. Oper Res 7(4):499–505

    Article  MathSciNet  Google Scholar 

  • Gazis DC, Herman R, Rothery RW (1961) Nonlinear follow-the-leader models of traffic flow. Oper Res 9(4):545–567

    Article  MathSciNet  Google Scholar 

  • Gipps PG (1981) A behavioural car-following model for computer simulation. Transp Res B Methodol 15(2):105–111

    Article  Google Scholar 

  • Greenberg H (1959) An analysis of traffic flow. Oper Res 7(1):79–85

    Article  MathSciNet  Google Scholar 

  • Greenshields BD, Channing W, Miller H (1935) A study of traffic capacity. In: Highway research board proceedings, vol 1935. National Research Council (USA), Highway Research Board

    Google Scholar 

  • Hall FL, Agyemang-Duah K (1991) Freeway capacity drop and the definition of capacity. Transp Res Rec 1320:91

    Google Scholar 

  • Helbing D (2001) Traffic and related self-driven many-particle systems. Rev Mod Phys 73(4):1067

    Article  ADS  Google Scholar 

  • Jia B, Li XG, Chen T, Jiang R, Gao ZY (2011) Cellular automaton model with time gap dependent randomisation under Kerner’s three-phase traffic theory. Transportmetrica 7(2):127–140

    Article  Google Scholar 

  • Jiang R, Wu QS (2003) Cellular automata models for synchronized traffic flow. J Phys A Math Gen 36(2):381

    Article  ADS  MathSciNet  Google Scholar 

  • Jiang R, Wu QS (2005) First order phase transition from free flow to synchronized flow in a cellular automata model. Eur Phys J B-Condens Matter Complex Syst 46(4):581–584

    Article  Google Scholar 

  • Jiang R, Wu Q, Zhu Z (2001) Full velocity difference model for a car-following theory. Phys Rev E 64(1):017101

    Article  ADS  Google Scholar 

  • Jiang R, Wu QS, Zhu ZJ (2002) A new continuum model for traffic flow and numerical tests. Transp Res B Methodol 36(5):405–419

    Article  Google Scholar 

  • Jiang R, Hu MB, Zhang HM, Gao ZY, Jia B, Wu QS, Wang B, Yang M (2014) Traffic experiment reveals the nature of car-following. PLoS One 9(4):e94351

    Article  ADS  Google Scholar 

  • Jiang R, Hu MB, Zhang HM, Gao ZY, Jia B, Wu QS (2015) On some experimental features of car-following behavior and how to model them. Transp Res B Methodol 80:338–354

    Article  Google Scholar 

  • Jiang R, Jin CJ, Zhang HM, Huang YX, Tian JF, Wang W, Hu MB, Wang H, Jia B (2017) Experimental and empirical investigations of traffic flow instability, Transp Res Part C: Emerg Technol. https://doi.org/10.1016./j.trc.2017.08.024

  • Jin CJ, Wang W (2011) The influence of nonmonotonic synchronized flow branch in a cellular automaton traffic flow model. Phys A Stat Mech Appl 390(23–24):4184–4191

    Article  Google Scholar 

  • Jin CJ, Wang W, Jiang R, Zhang HM, Wang H, Hu MB (2015) Understanding the structure of hyper-congested traffic from empirical and experimental evidences. Transp Res Part C: Emerg Technol 60:324–338

    Article  Google Scholar 

  • Kerner BS (1998) Experimental features of self-organization in traffic flow. Phys Rev Lett 81(17):3797–3800

    Article  ADS  Google Scholar 

  • Kerner BS (1999a) Congested traffic flow: observations and theory. Transp Res Rec J Transp Res Board 1678(1):160–167

    Article  Google Scholar 

  • Kerner BS (1999b) Theory of congested traffic flow: self-organization without bottlenecks. In: 14th international symposium on transportation and traffic theory

    Google Scholar 

  • Kerner B (1999c) Congested traffic flow: observations and theory. Transp Res Rec J Transp Res Board 1678(1):160–167

    Article  Google Scholar 

  • Kerner BS (2000) Experimental features of the emergence of moving jams in free traffic flow. J Phys A Math Gen 33(26):L221

    Article  ADS  Google Scholar 

  • Kerner BS (2002) Empirical macroscopic features of spatial-temporal traffic patterns at highway bottlenecks. Phys Rev E 65(4):046138

    Article  ADS  MathSciNet  Google Scholar 

  • Kerner BS (2004) The physics of traffic: empirical freeway pattern features, engineering applications, and theory. Phys Today 58(11):54–56

    Google Scholar 

  • Kerner BS (2009) Introduction to modern traffic flow theory and control: the long road to three-phase traffic theory. Springer, Berlin

    Book  Google Scholar 

  • Kerner BS (2013) Criticism of generally accepted fundamentals and methodologies of traffic and transportation theory: a brief review. Phys A Stat Mech Appl 392(21):5261–5282

    Article  MathSciNet  Google Scholar 

  • Kerner BS (2017) Breakdown in traffic networks: fundamentals of transportation science. Springer, Heidelberg

    Book  Google Scholar 

  • Kerner BS, Klenov SL (2002) A microscopic model for phase transitions in traffic flow. J Phys A Math Gen 35(3):L31

    Article  ADS  MathSciNet  Google Scholar 

  • Kerner BS, Rehborn H (1996) Experimental properties of complexity in traffic flow. Phys Rev E 53(5):R4275

    Article  ADS  Google Scholar 

  • Kerner BS, Rehborn H (1997) Experimental properties of phase transitions in traffic flow. Phys Rev Lett 79(20):4030

    Article  ADS  Google Scholar 

  • Kerner BS, Klenov SL, Wolf DE (2002) Cellular automata approach to three-phase traffic theory. J Phys A Math Gen 35(47):9971

    Article  ADS  MathSciNet  Google Scholar 

  • Kerner BS, Klenov SL, Schreckenberg M (2011) Simple cellular automaton model for traffic breakdown, highway capacity, and synchronized flow. Phys Rev E 84(4):046110

    Article  ADS  Google Scholar 

  • Knospe W, Santen L, Schadschneider A, Schreckenberg M (2000) Towards a realistic microscopic description of highway traffic. J Phys A Math Gen 33(48):L477

    Article  ADS  MathSciNet  Google Scholar 

  • Knospe W, Santen L, Schadschneider A, Schreckenberg M (2004) Empirical test for cellular automaton models of traffic flow. Phys Rev E 70(1):016115

    Article  ADS  Google Scholar 

  • Kokubo S, Tanimoto J, Hagishima A (2011) A new cellular automata model including a decelerating damping effect to reproduce Kerner’s three-phase theory. Phys A Stat Mech Appl 390(4):561–568

    Article  Google Scholar 

  • Lárraga ME, Alvarez-Icaza L (2010) Cellular automaton model for traffic flow based on safe driving policies and human reactions. Phys A Stat Mech Appl 389(23):5425–5438

    Article  Google Scholar 

  • Laval J (2006) Stochastic processes of moving bottlenecks: approximate formulas for highway capacity. Transp Res Rec: J Transp Res Board 1988:86–91

    Google Scholar 

  • Laval JA, Daganzo CF (2006) Lane-changing in traffic streams. Transp Res B Methodol 40(3):251–264

    Article  Google Scholar 

  • Laval JA, Leclercq L (2010) A mechanism to describe the formation and propagation of stop-and-go waves in congested freeway traffic. Philos Trans R Soc Lond A: Math, Phy Eng Sci 368(1928):4519–4541

    Article  ADS  MathSciNet  Google Scholar 

  • Lee HK, Barlovic R, Schreckenberg M, Kim D (2004) Mechanical restriction versus human overreaction triggering congested traffic states. Phys Rev Lett 92(23):238702

    Article  ADS  Google Scholar 

  • Li X, Ouyang Y (2011) Characterization of traffic oscillation propagation under nonlinear car-following laws. Transp Res B Methodol 45(9):1346–1361

    Article  Google Scholar 

  • Li X, Wu Q, Jiang R (2001) Cellular automaton model considering the velocity effect of a car on the successive car. Phys Rev E 64(6):066128

    Article  ADS  Google Scholar 

  • Li X, Wang X, Ouyang Y (2012) Prediction and field validation of traffic oscillation propagation under nonlinear car-following laws. Transp Res B Methodol 46(3):409–423

    Article  Google Scholar 

  • Li X, Cui J, An S, Parsafard M (2014) Stop-and-go traffic analysis: theoretical properties, environmental impacts and oscillation mitigation. Transp Res B Methodol 70:319–339

    Article  Google Scholar 

  • Lighthill MJ, Whitham GB (1955) On kinematic waves II. A theory of traffic flow on long crowded roads. Proc R Soc Lond A 229(1178):317–345. The Royal Society

    Article  ADS  MathSciNet  Google Scholar 

  • Maerivoet S, De Moor B (2005) Cellular automata models of road traffic. Phys Rep 419(1):1–64

    Article  ADS  MathSciNet  Google Scholar 

  • Mauch M, Cassidy MJ (2002) Freeway traffic oscillations: observations and predictions. In: Proceedings of the 15th international symposium on transportation and traffic theory

    Google Scholar 

  • May AD (1990) Traffic flow fundamentals. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Nagel K, Schreckenberg M (1992) A cellular automaton model for freeway traffic. J Phys I 2(12):2221–2229

    Google Scholar 

  • Nishinari K, Takahashi D (2000) Multi-value cellular automaton models and metastable states in a congested phase. J Phys A Math Gen 33(43):7709

    Article  ADS  MathSciNet  Google Scholar 

  • Payne HJ (1979) FREFLO: a macroscopic simulation model of freeway traffic. Transp Res Rec 722:68–77

    Google Scholar 

  • Pipes LA (1967) Car following models and the fundamental diagram of road traffic. Trans Res 1(1):21–29

    Google Scholar 

  • Richards PI (1956) Shock waves on highway. Oper Res 4:42–51

    Google Scholar 

  • Saberi M, Mahmassani HS (2013) Empirical characterization and interpretation of hysteresis and capacity drop phenomena in freeway networks. Transp Res Rec: J Transp Res Board. Transportation Research Board of the National Academies, Washington, DC

    Google Scholar 

  • Saifuzzaman M, Zheng Z (2014) Incorporating human-factors in car-following models: a review of recent developments and research needs. Transp Res Part C: Emerg Technol 48:379–403

    Article  Google Scholar 

  • Saifuzzaman M, Zheng Z, Haque MM, Washington S (2017) Understanding the mechanism of traffic hysteresis and traffic oscillations through the change in task difficulty level. Transp Res B Methodol 105:523–538

    Article  Google Scholar 

  • Schadschneider A, Schreckenberg M (1997) Traffic flow models with ‘slow-to-start’ rules. Ann Phys 509(7):541–551

    Article  MathSciNet  Google Scholar 

  • Schönhof M, Helbing D (2007) Empirical features of congested traffic states and their implications for traffic modeling. Transp Sci 41(2):135–166

    Article  Google Scholar 

  • Srivastava A, Geroliminis N (2013) Empirical observations of capacity drop in freeway merges with ramp control and integration in a first-order model. Transp Res Part C: Emerg Technol 30:161–177

    Article  Google Scholar 

  • Sugiyama Y, Fukui M, Kikuchi M, Hasebe K, Nakayama A, Nishinari K et al (2008) Traffic jams without bottlenecks – experimental evidence for the physical mechanism of the formation of a jam. New J Phys 10(3):033001

    Article  Google Scholar 

  • Takayasu M, Takayasu H (1993) 1/f noise in a traffic model. Fractals 1(04):860–866

    Article  Google Scholar 

  • Tian JF, Yuan ZZ, Jia B, Fan HQ, Wang T (2012a) Cellular automaton model in the fundamental diagram approach reproducing the synchronized outflow of wide moving jams. Phys Lett A 376(44):2781–2787

    Article  ADS  Google Scholar 

  • Tian JF, Yuan ZZ, Treiber M, Jia B, Zhang WY (2012b) Cellular automaton model within the fundamental-diagram approach reproducing some findings of the three-phase theory. Phys A Stat Mech Appl 391(11):3129–3139

    Article  Google Scholar 

  • Tian J, Treiber M, Ma S, Jia B, Zhang W (2015) Microscopic driving theory with oscillatory congested states: model and empirical verification. Transp Res B Methodol 71:138–157

    Article  Google Scholar 

  • Tian J, Li G, Treiber M, Jiang R, Jia N, Ma S (2016) Cellular automaton model simulating spatiotemporal patterns, phase transitions and concave growth pattern of oscillations in traffic flow. Trans Res B Methodol 93:560–575

    Article  Google Scholar 

  • Tian J, Jia B, Ma S, Zhu C, Jiang R, Ding Y (2017) Cellular automaton model with dynamical 2D speed-gap relation. Trans Sci 51(3):807–822

    Article  Google Scholar 

  • Treiber M, Helbing D (2003) Memory effects in microscopic traffic models and wide scattering in flow-density data. Phys Rev E 68(4):046119

    Article  ADS  Google Scholar 

  • Treiber M, Kesting A (2013) Traffic flow dynamics: data, models and simulation. no. Book, Whole. Springer, Berlin/Heidelberg

    Google Scholar 

  • Treiber M, Hennecke A, Helbing D (2000) Congested traffic states in empirical observations and microscopic simulations. Phys Rev E 62(2):1805

    Article  ADS  Google Scholar 

  • Treiber M, Kesting A, Helbing D (2006) Understanding widely scattered traffic flows, the capacity drop, and platoons as effects of variance-driven time gaps. Phys Rev E 74(1):016123

    Article  ADS  Google Scholar 

  • Treiterer J, Myers J (1974) The hysteresis phenomenon in traffic flow. Transp Traffic Theory 6:13–38

    Google Scholar 

  • Wang Z, Ma S, Jiang R, Tian J (2017) A cellular automaton model reproducing realistic propagation speed of downstream front of the moving synchronized pattern. Transportmetrica B: Transp Dyn. https://doi.org/10.1080./21680566.2017.1401966

  • Yeo H, Skabardonis A (2009) Understanding stop-and-go traffic in view of asymmetric traffic theory. In: Transportation and traffic theory 2009: Golden Jubilee. Springer, Boston, pp 99–115

    Google Scholar 

  • Zhao BH, Hu MB, Jiang R, Wu QS (2009) A realistic cellular automaton model for synchronized traffic flow. Chin Phys Lett 26(11):118902

    Article  ADS  Google Scholar 

  • Zheng Z (2014) Recent developments and research needs in modeling lane changing. Transp Res B Methodol 60:16–32

    Article  Google Scholar 

  • Zheng Z, Ahn S, Chen D, Laval J (2011) Applications of wavelet transform for analysis of freeway traffic: bottlenecks, transient traffic, and traffic oscillations. Transp Res B Methodol 45(2):372–384

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tian, J., Zhu, C., Jiang, R. (2018). Cellular Automaton Models in the Framework of Three-Phase Traffic Theory. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_670-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_670-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27737-5

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics