Skip to main content

Potential-Field Estimation Using Scalar and Vector Slepian Functions at Satellite Altitude

  • Living reference work entry
  • First Online:
Handbook of Geomathematics

Abstract

In the last few decades, a series of increasingly sophisticated satellite missions has brought us gravity and magnetometry data of ever improving quality. To make optimal use of this rich source of information on the structure of the Earth and other celestial bodies, our computational algorithms should be well matched to the specific properties of the data. In particular, inversion methods require specialized adaptation if the data are only locally available, if their quality varies spatially, or if we are interested in model recovery only for a specific spatial region. Here, we present two approaches to estimate potential fields on a spherical Earth, from gradient data collected at satellite altitude. Our context is that of the estimation of the gravitational or magnetic potential from vector-valued measurements. Both of our approaches utilize spherical Slepian functions to produce an approximation of local data at satellite altitude, which is subsequently transformed to the Earth’s spherical reference surface. The first approach is designed for radial-component data only and uses scalar Slepian functions. The second approach uses all three components of the gradient data and incorporates a new type of vectorial spherical Slepian functions that we introduce in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Albertella A, SansĂ² F, Sneeuw N (1999) Band-limited functions on a bounded spherical domain: the Slepian problem on the sphere. J Geodesy 73:436–447

    Article  MATH  Google Scholar 

  • Albertella A, Savcenko R, Bosch W, Rummel R (2008) Dynamic ocean topography – the geodetic approach, Technical report 27, Institut fĂ¼r Astronomische und Physikalische Geodäsie, Forschungseinrichtung Satellitengeodäsie, MĂ¼nchen.

    Google Scholar 

  • Arkani-Hamed J (2001) A 50-degree spherical harmonic model of the magnetic field of Mars. J Geophys Res 106(E10):23197–23208. doi:10.1029/2000JE001365

    Article  Google Scholar 

  • Arkani-Hamed J (2002) An improved 50-degree spherical harmonic model of the magnetic field of Mars derived from both high-altitude and low-altitude data. J Geophys Res 107(E10):5083. doi:10.1029/2001JE001835

    Article  Google Scholar 

  • Arkani-Hamed J (2004) A coherent model of the crustal magnetic field of Mars. J Geophys Res 109:E09005. doi:10.1029/2004JE002265

    Google Scholar 

  • Arkani-Hamed J, Strangway DW (1986) Band-limited global scalar magnetic anomaly map of the Earth derived from Magsat data. J Geophys Res 91(B8):8193–8203

    Article  Google Scholar 

  • Backus GE, Parker RL, Constable CG (1996) Foundations of geomagnetism. Cambridge University Press, Cambridge

    Google Scholar 

  • Beggan CD, Saarimäki J, Whaler KA, Simons FJ (2013) Spectral and spatial decomposition of lithospheric magnetic field models using spherical Slepian functions. Geophys J Int 193(1): 136–148. doi:10.1093/gji/ggs122

    Article  Google Scholar 

  • Blakely RJ (1995) Potential theory in gravity and magnetic applications. Cambridge University Press, New York

    Book  Google Scholar 

  • Bölling K, Grafarend EW (2005) Ellipsoidal spectral properties of the Earth’s gravitational potential and its first and second derivatives. J Geodesy 79(6–7):300–330. doi:10.1007/s00190-005-0465-y

    Article  MATH  Google Scholar 

  • Chambodut A, Panet I, Mandea M, Diament M, Holschneider M, Jamet O (2005) Wavelet frames: an alternative to spherical harmonic representation of potential fields. Geophys J Int 163(3): 875–899

    Article  Google Scholar 

  • Cox DR, Hinkley DV (1974) Theoretical statistics. Chapman and Hall, London

    Book  MATH  Google Scholar 

  • Dahlen FA, Tromp J (1998) Theoretical global seismology. Princeton University Press, Princeton

    Google Scholar 

  • Davison AC (2003) Statistical models. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • de Santis A (1991) Translated origin spherical cap harmonic analysis. Geophys J Int 106:253–263

    Article  Google Scholar 

  • Eshagh M (2009) Comparison of two approaches for considering laterally varying density in topographic effect on satellite gravity gradiometric data. Acta Geophysica. doi:10.2478/s11600-009-0057-y

    Google Scholar 

  • Fengler MJ, Freeden W, Kohlhaas A, Michel V, Peters T (2007) Wavelet modeling of regional and temporal variations of the earth’s gravitational potential observed by GRACE. J Geodesy 81(1):5–15, doi:10.1007/s00190-006-0040-1

    Article  MATH  Google Scholar 

  • Freeden W, Michel V (2004) Multiscale potential theory. Birkhäuser, Boston

    Book  MATH  Google Scholar 

  • Freeden W, Schreiner M (2009) Spherical functions of mathematical geosciences: a scalar, vectorial, and tensorial setup. Springer, Berlin

    Google Scholar 

  • Gubbins D, Ivers D, Masterton SM, Winch DE (2011) Analysis of lithospheric magnetization in vector spherical harmonics. Geophys J Int 187:99–117. doi:10.1111/j.1365-246X.2011.05153.x

    Article  Google Scholar 

  • Haines GV (1985) Spherical cap harmonic analysis. J Geophys Res 90(B3):2583–2591

    Article  MathSciNet  Google Scholar 

  • Harig C, Simons FJ (2012) Mapping Greenland’s mass loss in space and time. Proc Natl Acad Sci 109(49):19934–19937. doi:10.1073/pnas.1206785109

    Article  Google Scholar 

  • Hwang C (1993) Spectral analysis using orthonormal functions with a case study on sea surface topography. Geophys J Int 115:1148–1160

    Article  Google Scholar 

  • Hwang C, Chen S-K (1997) Fully normalized spherical cap harmonics: Application to the analysis of sea-level data from TOPEX/POSEIDON and ERS-1. Geophys J Int 129:450–460

    Article  Google Scholar 

  • Jahn K, Bokor N (2012) Vector Slepian basis functions with optimal energy concentration in high numerical aperture focusing. Opt Commun 285:2028–2038. doi:10.1016/j.optcom.2011.11.107

    Article  Google Scholar 

  • Jahn K, Bokor N (2014) Revisiting the concentration problem of vector fields within a spherical cap: A commuting differential operator solution. J Fourier Anal Appl 20:421–451. doi:10.1007/s00041-014-9324-7

    Article  MathSciNet  Google Scholar 

  • Kaula WM (1967) Theory of statistical analysis of data distributed over a sphere. Rev Geophys 5(1):83–107

    Article  Google Scholar 

  • Kennedy RA, Sadeghi P (2013) Hilbert space methods in signal processing. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Korte M, Holme R (2003) Regularization of spherical cap harmonics. Geophys J Int 153:253–262. doi:10.1046/j.1365-246X.2003.01898.x

    Article  Google Scholar 

  • Langel RA, Hinze WJ (1998) The magnetic field of the Earth’s lithosphere: The satellite perspective. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lewis KW, Simons FJ (2012) Local spectral variability and the origin of the Martian crustal magnetic field. Geophys Res Lett 39:L18201. doi:10.1029/2012GL052708

    Google Scholar 

  • Lowes FJ, Winch DE (2012) Orthogonality of harmonic potentials and fields in spheroidal and ellipsoidal coordinates: application to geomagnetism and geodesy. Geophys J Int 191(2): 491–507. doi:10.1111/j.1365-246X.2012.05590.x

    Article  Google Scholar 

  • Lowes FJ, de Santis A, Duka B (1995) A discussion of the uniqueness of a Laplacian potential when given only partial field information on a sphere. Geophys J Int 121(2):579–584

    Article  Google Scholar 

  • Mallat S (2008) A wavelet tour of signal processing, the sparse way, 3rd edn. Academic, San Diego

    Google Scholar 

  • Maus S (2010) An ellipsoidal harmonic representation of Earth’s lithospheric magnetic field to degree and order 720. Geochem Geophys Geosys 11(6):Q06015. doi:10.1029/2010GC003026

    Article  Google Scholar 

  • Maus S, LĂ¼hr H, Purucker M (2006a) Simulation of the high-degree lithospheric field recovery for the Swarm constellation of satellites. Earth Planets Space 58:397–407

    Article  Google Scholar 

  • Maus S, Rother M, Hemant K, Stolle C, LĂ¼hr H, Kuvshinov A, Olsen N (2006b) Earth’s lithospheric magnetic field determined to spherical harmonic degree 90 from CHAMP satellite measurements. Geophys J Int 164:319–330. doi:10.1111/j.1365-246X.2005.02833.x

    Article  Google Scholar 

  • Maus S, Rother M, Stolle C, Mai W, Choi S, LĂ¼hr H, Cooke D, Roth C (2006c) Third generation of the Potsdam magnetic model of the earth (POMME). Geochem Geophys Geosys 7:Q07008. doi:10.1029/2006GC001269

    Article  Google Scholar 

  • Mayer C, Maier T (2006) Separating inner and outer Earth’s magnetic field from CHAMP satellite measurements by means of vector scaling functions and wavelets. Geophys J Int 167:1188–1203. doi:10.1111/j.1365-246X.2006.03199.x

    Article  Google Scholar 

  • Moritz H (2010) Classical physical geodesy. In: Freeden W, Nashed MZ, Sonar T (eds) Handbook of geomathematics, chap 6, pp 127–158. Springer, Heidelberg. doi:10.1007/978-3-642-01546-5_6

    Google Scholar 

  • Nutz H (2002) A unified setup of gravitational field observables. Ph.D. thesis, University Kaisers-lautern, Germany

    Google Scholar 

  • O’Brien MS, Parker RL (1994) Regularized geomagnetic field modelling using monopoles. Geophys J Int 118(3):566–578. doi:10.1111/j.1365-246X.1994.tb03985.x

    Article  Google Scholar 

  • Olsen N, Mandea M, Sabaka TJ, Tøffner-Clausen L (2009) CHAOS-2—a geomagnetic field model derived from one decade of continuous satellite data. Geophys J Int 179:1477–1487. doi:10.1111/j.1365-246X.2009.04386.x

    Article  Google Scholar 

  • Olsen N, Hulot G, Sabaka TJ (2010) Sources of the geomagnetic field and the modern data that enable their investigation. In: Freeden W, Nashed MZ, Sonar T (eds) Handbook of Geomathematics, chap 5, pp 105–124. Springer, Heidelberg. doi:10.1007/978-3-642-01546-5_5

    Chapter  Google Scholar 

  • Plattner A, Simons FJ (2013) A spatiospectral localization approach for analyzing and representing vector-valued functions on spherical surfaces. In: Van de Ville D, Goyal VK, Papadakis M (eds) Wavelets and sparsity XV. SPIE, vol 8858, pp 88580N. doi: 10.1117/12.2024703

    Google Scholar 

  • Plattner A, Simons FJ (2014) Spatiospectral concentration of vector fields on a sphere. Appl Comput Harmon Anal 36:1–22. doi:10.1016/j.acha.2012.12.001

    Article  MATH  MathSciNet  Google Scholar 

  • Plattner A, Simons FJ, Wei L (2012) Analysis of real vector fields on the sphere using Slepian functions. In: 2012 IEEE statistical signal processing workshop (SSP’12), Ann Arbor

    Google Scholar 

  • Rowlands DD, Luthcke SB, Klosko SM, Lemoine FGR, Chinn DS, McCarthy JJ, Cox CM, Anderson OB (2005) Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements. Geophys Res Lett 32:L04310. doi:10.1029/2004GL021908

    Google Scholar 

  • Rummel R, van Gelderen M (1995) Meissl scheme — spectral characteristics of physical geodesy. Manuscr Geod 20(5):379–385

    Google Scholar 

  • Sabaka TJ, Hulot G, Olsen N (2010) Mathematical properties relevant to geomagnetic field modeling. In: Freeden W, Nashed MZ, Sonar T (eds) Handbook of Geomathematics, chap 17, pp 503–538. Springer, Heidelberg. doi:10.1007/978-3-642-01546-5_17

    Chapter  Google Scholar 

  • Schachtschneider R, Holschneider M, Mandea M (2010) Error distribution in regional inversion of potential field data. Geophys J Int 181:1428–1440. doi:10.1111/j.1365-246X.2010.04598.x

    Google Scholar 

  • Schachtschneider R, Holschneider M, Mandea M (2012) Error distribution in regional modelling of the geomagnetic field. Geophys J Int 191:1015–1024. doi:10.1111/j.1365-246X.2012.05675.x

    Google Scholar 

  • Simons FJ, Dahlen FA (2006) Spherical Slepian functions and the polar gap in geodesy. Geophys J Int 166:1039–1061. doi:10.1111/j.1365-246X.2006.03065.x

    Article  Google Scholar 

  • Simons FJ, Dahlen FA, Wieczorek MA (2006) Spatiospectral concentration on a sphere. SIAM Rev 48(3):504–536. doi:10.1137/S0036144504445765

    Article  MATH  MathSciNet  Google Scholar 

  • Simons FJ, Hawthorne JC, Beggan CD (2009) Efficient analysis and representation of geophysical processes using localized spherical basis functions. In: Goyal VK, Papadakis M, Van de Ville D (eds) Wavelets XIII, vol 7446, pp 74460G. SPIE. doi:10.1117/12.825730

    Google Scholar 

  • Slepian D (1964) Prolate spheroidal wave functions, Fourier analysis and uncertainty — IV: extensions to many dimensions; generalized prolate spheroidal functions. Bell Syst Tech J 43(6):3009–3057

    Article  MATH  MathSciNet  Google Scholar 

  • Slepian D (1983) Some comments on Fourier analysis, uncertainty and modeling. SIAM Rev 25(3):379–393

    Article  MATH  MathSciNet  Google Scholar 

  • Slepian D, Pollak HO (1961) Prolate spheroidal wave functions, Fourier analysis and uncertainty — I. Bell Syst Tech J 40(1):43–63

    Article  MATH  MathSciNet  Google Scholar 

  • Slobbe DC, Simons FJ, Klees R (2012) The spherical Slepian basis as a means to obtain spectral consistency between mean sea level and the geoid. J Geodesy 86(8):609–628. doi:10.1007/s00190-012-0543-x

    Article  Google Scholar 

  • ThĂ©bault E, Schott JJ, Mandea M (2006) Revised spherical cap harmonic analysis (R-SCHA): validation and properties. J Geophys Res 111(B1):B01102. doi:10.1029/2005JB003836

    Google Scholar 

  • Trampert J, Snieder R (1996) Model estimations biased by truncated expansions: Possible artifacts in seismic tomography. Science 271(5253):1257–1260. doi:10.1126/science.271.5253.1257

    Article  MATH  MathSciNet  Google Scholar 

  • Whaler KA, Gubbins D (1981) Spherical harmonic analysis of the geomagnetic field: an example of a linear inverse problem. Geophys J Int 65(3):645–693. doi:10.1111/j.1365-246X.1981.tb04877.x

    Article  MATH  Google Scholar 

  • Wieczorek MA, Simons FJ (2007) Minimum-variance spectral analysis on the sphere. J Fourier Anal Appl 13(6):665–692. doi:10.1007/s00041-006-6904-1

    Article  MATH  MathSciNet  Google Scholar 

  • Xu P (1992) Determination of surface gravity anomalies using gradiometric observables. Geophys J Int 110:321–332

    Article  Google Scholar 

  • Xu P (1992) The value of minimum norm estimation of geopotential fields. Geophys J Int 111: 170–178

    Article  Google Scholar 

  • Xu P (1998) Truncated SVD methods for discrete linear ill-posed problems. Geophys J Int 135(2):505–514. doi:10.1046/j.1365-246X.1998.00652.x

    Article  Google Scholar 

Download references

Acknowledgements

A. P. thanks the Ulrich Schmucker Memorial Trust and the Swiss National Science Foundation, the National Science Foundation, and Princeton University for funding and the Smart family of Cape Town for their hospitality while writing this manuscript. This research was sponsored by the US National Science Foundation under grants EAR-1150145 and EAR-1245788 to F.J.S., and by the National Aeronautics & Space Administration under grant NNX14AM29G to A.P. and F.J.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Plattner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Plattner, A., Simons, F.J. (2013). Potential-Field Estimation Using Scalar and Vector Slepian Functions at Satellite Altitude. In: Freeden, W., Nashed, M., Sonar, T. (eds) Handbook of Geomathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27793-1_64-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27793-1_64-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27793-1

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics