Skip to main content

Skin Aging: A Generalization of the Micro-inflammatory Hypothesis

  • Living reference work entry
  • First Online:
Textbook of Aging Skin
  • 541 Accesses

Abstract

The micro-inflammatory hypothesis of skin aging can be represented as a cyclic phenomenon as follows. A cell is damaged by endogenous or exogenous factors. The damaged cell releases proinflammatory signals (prostaglandins, leukotrienes, etc.). Inflammatory signals bind to resident mast cells and induce the release of histamine and TNF-α that diffuse to blood vessels lined by endothelial cells. Stimulated by histamine and TNF-α, endothelial cells synthesize and mobilize ICAM-1. ICAM-1 synthesis can also be stimulated by anoxia, glycated proteins, neuropeptides, hormonal imbalance, or other signals not originating from damaged cells, which all are factors of skin aging. Circulating immune cells bind to ICAM-1, roll over, release hydrogen peroxide, and perform diapedesis. In the presence of chemotactic signals from damaged cell, immune cells fray a path across the dermis by releasing singlet oxygen and matrix metalloproteinases. In the absence of chemotactic signals, immune cells damage the connective tissue surrounding the blood vessels. When the damaged cell is reached, immune cells release an oxidative burst to destroy the damaged cell, engulf the debris, and proceed to the lymphatic system. In these steps, innocent bystander cells can be damaged, thus triggering another round of release of proinflammatory signals, and the cycle is repeated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Giacomoni PU. Aging and cellular defence mechanisms. In: Franceschi C, Crepaldi G, Cristofalo VJ, Vijg J, editors. Aging and cellular defence mechanisms, Annals of the New York Academy of Sciences, vol. 663. New York: New York Academy of Sciences; 1992. p. 1–3.

    Google Scholar 

  2. Hawk JLM, Murphy GM, Holden GA. The presence of neutrophils in human cutaneous ultraviolet-B inflammation. Br J Dermatol. 1988;118:27–30.

    Article  CAS  PubMed  Google Scholar 

  3. Novoltsev VN, Novoltseva J, Yashin A. A homeostatic model of oxidative damage explains paradoxes observed in the earlier aging experiments: a fusion and extension of older theories of aging. Biogerontology. 2001;2:127–38.

    Article  Google Scholar 

  4. Giacomoni PU, D’Alessio P. Skin ageing: the relevance of antioxidants. In: Rattan SIS, Toussaint O, editors. Molecular gerontology: research status and strategies. New York: Plenum Press; 1996. p. 177–92.

    Chapter  Google Scholar 

  5. Giacomoni PU, Rein G. A mechanistic model for the aging of human skin. Micron. 2004;35:179–84.

    Article  PubMed  Google Scholar 

  6. Wlaschek M, Schneider LA, Kohn M, Nűßeler E, Treiber N, Scharffetter-Kochanek K. Aging after solar radiation. In: Giacomoni PU, editor. Biophysical and Physiological Effects of Solar Radiation on Human Skin. Cambridge: RSC Publishing; 2007. p. 191–210.

    Chapter  Google Scholar 

  7. Arnould T, Michiels C, Janssens D, Delaive E, Remacle J. Hypoxia induces PMN adherence to umbilical vein endothelium. Cardiovasc Res. 1995;30:1009–16.

    Article  CAS  PubMed  Google Scholar 

  8. Tudor KS, Hess KL, Cook-Mills JM. Cytokines modulate endothelial cell intracellular signal transduction required for VCAM-1-dependent lymphocyte transendothelial migration. Cytokine. 2001;15:196–211.

    Article  CAS  PubMed  Google Scholar 

  9. Goldman G, Welbourn R, Klausner JM, Kobzik L, Valeri CR, Shepro D, Hechtman HB. Intravascular chemoattractants inhibit diapedesis by selective receptor occupancy. Am J Physiol. 1991;260:H465–72.

    CAS  PubMed  Google Scholar 

  10. Gilchrest B. Aging of skin. In: Fitzpatrick TB, Zur Hausen A, Wolff K, Freedberg IM, Austen KF, editors. Dermatology in General Medicine. New York: McGraw-Hill; 1993. p. 150–7.

    Google Scholar 

  11. Giacomoni PU, Rein G. Factors of skin aging share common mechanisms. Biogerontology. 2001;2:219–29.

    Article  CAS  PubMed  Google Scholar 

  12. Fyhrquist F, Saijonmaa O, Metsärinne K, Tikkanen I, Rosenlöf K, Tikkanen T. Raised plasma endothelin-1 concentration following cold pressor test. Biochem Biophys Res Commun. 1990;169:217–21.

    Article  CAS  PubMed  Google Scholar 

  13. Coppolino G, Bolignano D, Campo S, Loddo S, Teti D, Buemi M. Circulating progenitor cells after cold pressor test in hypertensive and uremic patients. Hypertens Res. 2008;31:717–24.

    Article  PubMed  Google Scholar 

  14. Zouki C, Baron C, Fournier A, Filep JG. Endothelin-1 enhances neutrophil adhesion to human coronary artery endothelial cells: role of ET(A) receptors and platelet-activating factor. Br J Pharmacol. 1999;127:969–79.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Verma S, Li SH, Badiwala MV, Weisel RD, Fedak PW, Li RK, Dhillon B, Mickle DA. Endothelin antagonism and interleukin-6 inhibition attenuate the proatherogenic effects of C-reactive protein. Circulation. 2002;105:1890–6.

    Article  CAS  PubMed  Google Scholar 

  16. Waters CE, Shi-Wen X, Denton CP, Abraham DJ, Pearson JD. Signaling pathways regulating intercellular adhesion molecule 1 expression by endothelin 1: comparison with interleukin-1 ß in normal and scleroderma dermal fibroblasts. Arthritis Rheum. 2006;54:649–60.

    Article  CAS  PubMed  Google Scholar 

  17. Sacanella E, Badia E, Nicolas JM, Fernandez-Sola J, Antunez E, Urbano-Marquez A, Estruch R. Differential effects of moderate or heavy alcohol consumption on circulating adhesion molecule levels. Thromb Haemost. 2002;88:52–5.

    CAS  PubMed  Google Scholar 

  18. Vazquez-Agell M, Sacanella E, Tobias E, Monagas M, Antunez E, Zamora-Ros R, Andres-Lacueva C, Lamuel-Raventos RM, Fernandez-Sola J, Nicolas JM, Estruch R. Inflammatory markers of atherosclerosis are decreased after moderate consumption of cava (sparkling wine) in men with low cardiovascular risk. J Nutr. 2007;137:2279–84.

    CAS  PubMed  Google Scholar 

  19. Sacanella E, Vazquez-Agell M, Mena MP, Antunez E, Fernandez-Sola J, Nicolas JM, Lamuela-Raventos RM, Ros E, Estruch R. Down-regulation of adhesion molecules and other inflammatory biomarkers after moderate wine consumption in healthy women: a randomized trial. Am J Clin Nutr. 2007;86:1463–9.

    CAS  PubMed  Google Scholar 

  20. Sacanella E, Estruch R. The effect of alcohol consumption on endothelial adhesion molecule expression. Addict Biol. 2003;8:371–8.

    Article  CAS  PubMed  Google Scholar 

  21. Cocks TM, Arnold PJ. 5-Hydroxytryptamine (5-HT) mediates potent relaxation in the sheep isolated pulmonary vein via activation of 5-HT4 receptors. Br J Pharmacol. 1992;107:591–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Ahn AH, Basbaur AI. Tissue injury regulates serotonin 1D receptor expression: implications for the control of migraine and inflammatory pain. J Neurosci. 2006;26:8332–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Bolay H, Reuter U, Dunn AK, Huang Z, Boas DA. Moskowitz MA Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Med. 2002;8:136–42.

    Article  CAS  PubMed  Google Scholar 

  24. Buzzi MG, Carter WB, Shimizu T, Heath 3rd H, Moskowitz MA. Dihydroergotamine and sumatriptan attenuate levels of CGRP in plasma in rat superior sagittal sinus during electrical stimulation of the trigeminal ganglion. Neuropharmacology. 1991;30:1193–200.

    Article  CAS  PubMed  Google Scholar 

  25. Ahn AH, Basbaum AI. Where do triptans act in the treatment of migraine? Pain. 2005;115:1–4.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Ansel JC, Armstrong CA, Song I, Quinlan KL, Olerud JE, Caughman SW, Bunnett NW. Interactions of the skin and nervous system. J Investig Dermatol Symp Proc. 1997;2:23–6.

    Article  CAS  PubMed  Google Scholar 

  27. Björklund H, Dalsgaard CJ, Jonsson CE, Hermansson A. Sensory and autonomic innervation of non-hairy and hairy human skin. An immunohistochemical study. Cell Tissue Res. 1986;243:51–7.

    Article  PubMed  Google Scholar 

  28. Jensen K, Tuxen C, Pedersen-Bjergaard U, Jansen I. Pain, tenderness, wheal and flare induced by substance-P, bradykinin and 5-hydroxytryptamine in humans. Cephalalgia. 1991;11:175–82.

    Article  CAS  PubMed  Google Scholar 

  29. Birklein F, Schmelz M. Neuropeptides, neurogenic inflammation and complex regional pain syndrome (CRPS). Neurosci Lett. 2008;437:199–202.

    Article  CAS  PubMed  Google Scholar 

  30. Rukwied R, Heyer G. Cutaneous reactions and sensations after intracutaneous injection of vasoactive intestinal polypeptide and acetylcholine in atopic eczema patients and healthy controls. Arch Dermatol Res. 1998;290:198–204.

    Article  CAS  PubMed  Google Scholar 

  31. Cardell LO, Stjärne P, Wagstaff SJ, Agustí C, Nadel JA. PACAP-induced plasma extravasation in rat skin. Regul Pept. 1997;71:67–71.

    Article  CAS  PubMed  Google Scholar 

  32. Dallos A, Kiss M, Polyánka H, Dobozy A, Kemény L, Husz S. Effects of the neuropeptides substance P, calcitonin gene-related peptide, vasoactive intestinal polypeptide and galanin on the production of nerve growth factor and inflammatory cytokines in cultured human keratinocytes. Neuropeptides. 2006;40:251–63.

    Article  CAS  PubMed  Google Scholar 

  33. Kulka M, Sheen CH, Tancowny BP, Grammer LC, Schleimer RP. Neuropeptides activate human mast cell degranulation and chemokine production. Immunology. 2008;123:398–410.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Hall JM. Bradykinin receptors: pharmacological properties and biological roles. Pharmacol Ther. 1992;56:131–90.

    Article  CAS  PubMed  Google Scholar 

  35. Wahlestedt C, Bynke G, Hakanson R. Pupillary constriction by bradykinin and capsaicin: mode of action. Eur J Pharmacol. 1985;106:577–83.

    Article  Google Scholar 

  36. Brain SD, Williams TJ. Inflammatory oedema induced by synergism between calcitonin gene-related peptide (CGRP) and mediators of increased vascular permeability. Br J Pharmacol. 1985;86:855–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Cambridge H, Brain SD. Calcitonin gene-related peptide increases blood flow and potentiates plasma protein extravasation in the rat knee joint. Br J Pharmacol. 1992;106:746–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Petho G, Reeh PW. Sensory and signaling mechanisms of bradykinin, eicosanoids, platelet-activating factor and nitric oxide in peripheral nociceptors. Physiol Rev. 2012;92:1699–775.

    Article  CAS  PubMed  Google Scholar 

  39. Goebel MU, Mills PJ. Acute psychological stress and exercise and changes in peripheral leukocyte adhesion molecule expression and density. Psychosom Med. 2000;62:664–70.

    Article  CAS  PubMed  Google Scholar 

  40. Chung HY, Cesari M, Anton S, Marzetti E, Giovannini S, Seo AY, Carter C, Yu BP, Leeuwenburgh C. Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Res Rev. 2009;8:18–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Thomas NE, Williams DR. Inflammatory factors, physical activity, and physical fitness in young people Scand J Med Sci Sports. 2008;18:543–556.

    Google Scholar 

  42. Nielsen AR, Pedersen BK. The biological roles of exercise-induced cytokines: IL-6, IL-8 and IL-15. Appl Physiol Nutr Metab. 2007;32:833–9.

    Article  CAS  PubMed  Google Scholar 

  43. Radom-Aizik S, Zaldivar Jr F, Leu SY, Galassetti P, Cooper DM. Effects of 30 min of aerobic exercise on gene expression in human neutrophils. J Appl Physiol. 2008;104:236–43.

    Article  CAS  PubMed  Google Scholar 

  44. Mills PJ, Hong S, Redwine L, Carter SM, Chiu A, Ziegler MG, Dimsdale JE, Maisel AS. Physical fitness attenuates leukocyte endothelial adhesion in response to acute exercise. J Appl Physiol. 2006;101:785–8.

    Article  CAS  PubMed  Google Scholar 

  45. Nemet D, Mills PJ, Cooper DM. Effect of intense wrestling exercise on leucocytes and adhesion molecules in adolescent boys. Br J Sports Med. 2004;38:154–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Newman I, Wilkinson PC. Locomotor responses of human CD45 lymphocyte subsets: preferential locomotion of CD45RO + lymphocytes in response to attractants and mitogens. Immunology. 1993;78:92–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Hamann D, Baars PA, Rep MH, Hooibrink B, Kerkhof-Garde SR, Klein MR, van Lier RA. Phenotypic and functional separation of memory and effector human CD8 T cells. J Exp Med. 1997;186(9):1407–18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Bartzeliotou AI, Margeli AP, Tsironi M, Skenderi K, Bacoula C, Chrousos GP, Papassotiriou I. Circulating levels of adhesion molecules and markers of endothelial activation in acute inflammation induced by prolonged brisk exercise. Clin Biochem. 2007;40:765–70.

    Article  CAS  PubMed  Google Scholar 

  49. Fischer CP. Interleukin-6 in acute exercise and training: what is the biological relevance? Exerc Immunol Rev. 2006;12:6–33.

    PubMed  Google Scholar 

  50. Silva LA, Silveira PC, Pinho CA, Tuon T, Dal Pizzol F, Pinho RA. N-acetylcysteine supplementation and oxidative damage and inflammatory response after eccentric exercise. Int J Sport Nutr Exerc Metab. 2008;18:379–88.

    CAS  PubMed  Google Scholar 

  51. Dousset E, Avela J, Ishikawa M, Kallio J, Kuitunen S, Kyroelainen H, Linnamo V, Komi PV. Bimodal recovery pattern in human skeletal muscle induced by exhaustive stretch-shortening exercise. Med Sci Sports Exerc. 2007;39:453–60.

    Article  PubMed  Google Scholar 

  52. Jimenez-Jimenez R, Cuevas MJ, Almar M, Lima E, Garcia-Lopez D, De Paz JA, Gonzalez-Gallego J. Eccentric training impairs NF-kappaB activation and overexpression of inflammation-related genes induced by acute eccentric exercise in the elderly. Mech Ageing Dev. 2008;129:313–21.

    Article  CAS  PubMed  Google Scholar 

  53. Ispirlidis I, Fatouros IG, Jamurtas AZ, Nikolaidis MG, Michailidis I, Douroudos I, Margonis K, Chatzinikolaou A, Kalistratos E, Katrabasas I, Alexiou V, Taxildaris K. Time-course of changes in inflammatory and performance responses following a soccer game. Clin J Sport Med. 2008;18(5):423–31.

    Article  PubMed  Google Scholar 

  54. Neubauer O, Koenig D, Wagner KH. Recovery after an Ironman triathlon: sustained inflammatory responses and muscular stress. Eur J Appl Physiol. 2008;104:417–26.

    Article  PubMed  Google Scholar 

  55. Gundersen Y, Opstad PK, Reistad T, Thrane I, Vaagenes P. Seven days’ around the clock exhaustive physical exertion combined with energy depletion and sleep deprivation primes circulating leukocytes. Eur J Appl Physiol. 2006;97:151–7.

    Article  PubMed  Google Scholar 

  56. Frey DJ, Fleshner M, Wright Jr KP. The effects of 40 hours of total sleep deprivation on inflammatory markers in healthy young adults. Brain Behav Immun. 2007;21:1050–7.

    Article  CAS  PubMed  Google Scholar 

  57. Mills PJ, von Kaenel R, Norman D, Natarajan L, Ziegler MG, Dimsdale JE. Inflammation and sleep in healthy individuals. Sleep. 2007;30:729–35.

    PubMed Central  PubMed  Google Scholar 

  58. Haack M, Sanchez E, Mullington JM. Elevated inflammatory markers in response to prolonged sleep restriction are associated with increased pain experience in healthy volunteers. Sleep. 2007;30:1145–52.

    PubMed Central  PubMed  Google Scholar 

  59. Vgontzas AN, Papanicolaou DA, Bixler EO, Lotsikas A, Zachman K, Kales A, Prolo P, Wong ML, Licinio J, Gold PW, Hermida RC, Mastorakos G, Chrousos GP. Circadian Interleukin-6 secretion and quantity and depth of sleep. J Clin Endocrinol Metab. 1999;84:2603–7.

    Article  CAS  PubMed  Google Scholar 

  60. Prinz PN. Age impairments in sleep, metabolic and immune functions. Exp Gerontol. 2004;39:1739–43.

    Article  CAS  PubMed  Google Scholar 

  61. Wyss-Coray T, Rogers J. Inflammation in Alzheimer disease-A brief Review of the basic Science and Clinical Literature. Cold Spring Harb Perspect Med. 2012;2:1–23.

    Article  Google Scholar 

  62. Yudoh K, Karasawa R. Statin prevents chondrocyte aging and degeneration of articular cartilage in osteoarthritis (OA). Aging. 2010;2:990–8.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo U. Giacomoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Giacomoni, P.U., Rein, G. (2015). Skin Aging: A Generalization of the Micro-inflammatory Hypothesis. In: Farage, M., Miller, K., Maibach, H. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27814-3_76-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27814-3_76-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27814-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics