Skip to main content

Greedy Set-Cover Algorithms

  • Living reference work entry
  • First Online:
Encyclopedia of Algorithms
  • 638 Accesses

Years and Authors of Summarized Original Work

1974–1979; Chvátal, Johnson, Lovász, Stein

Problem Definition

Given a collection \(\mathcal{S}\) of sets over a universe U, a set cover \(C \subseteq \mathcal{S}\) is a subcollection of the sets whose union is U. The set-cover problem is, given \(\mathcal{S}\), to find a minimum-cardinality set cover. In the weighted set-cover problem, for each set \(s \in \mathcal{S}\), a weight w s ≥ 0 is also specified, and the goal is to find a set-cover C of minimum total weight \(\sum \limits _{S\in C}w_{S}\).

Weighted set cover is a special case of minimizing a linear function subject to a submodular constraint, defined as follows. Given a collection \(\mathcal{S}\) of objects, for each object s a nonnegative weight w s , and a nondecreasing submodular function \(f : 2^{\mathcal{S}}\rightarrow\mathbb{R}\), the goal is to find a subcollection \(C \subseteq \mathcal{S}\)such that \(f\left (C\right ) = f\left (\mathcal{S}\right )\) minimizing \(\sum...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Recommended Reading

  1. Brönnimann H, Goodrich MT (1995) Almost optimal set covers in finite VC-dimension. Discret Comput Geom 14(4):463–479

    Article  MATH  Google Scholar 

  2. Chvátal V (1979) A greedy heuristic for the set-covering problem. Math Oper Res 4(3):  233–235

    Article  MATH  MathSciNet  Google Scholar 

  3. Feige U (1998) A threshold of ln n for approximating set cover. J ACM 45(4):634–652

    Article  MATH  MathSciNet  Google Scholar 

  4. Gonzalez TF (2007) Handbook of approximation algorithms and metaheuristics. Chapman & Hall/CRC computer & information science series. Chapman & Hall/CRC, Boca Raton

    Book  MATH  Google Scholar 

  5. Johnson DS (1974) Approximation algorithms for combinatorial problems. J Comput Syst Sci 9:256–278

    Article  MATH  Google Scholar 

  6. Khuller S, Moss A, Naor J (1999) The budgeted maximum coverage problem. Inform Process Lett 70(1):39–45

    Article  MATH  MathSciNet  Google Scholar 

  7. Kolliopoulos SG, Young NE (2001) Tight approximation results for general covering integer programs. In: Proceedings of the forty-second annual IEEE symposium on foundations of computer science, Las Vegas, pp 522–528

    Google Scholar 

  8. Lovász L (1975) On the ratio of optimal integral and fractional covers. Discret Math 13:383–390

    Article  MATH  Google Scholar 

  9. Lund C, Yannakakis M (1994) On the hardness of approximating minimization problems. J ACM 41(5):960–981

    Article  MATH  MathSciNet  Google Scholar 

  10. Nemhauser GL, Wolsey LA (1988) Integer and combinatorial optimization. Wiley, New York

    Book  MATH  Google Scholar 

  11. Slavik P (1997) A tight analysis of the greedy algorithm for set cover. J Algorithms 25(2): 237–254

    Article  MATH  MathSciNet  Google Scholar 

  12. Srinivasan A (1995) Improved approximations of packing and covering problems. In: Proceedings of the twenty-seventh annual ACM symposium on theory of computing, Heraklion, pp 268–276

    Google Scholar 

  13. Stein SK (1974) Two combinatorial covering theorems. J Comb Theor A 16:391–397

    Article  MATH  Google Scholar 

  14. van Santen JPH, Buchsbaum AL (1997) Methods for optimal text selection. In: Proceedings of the European conference on speech communication and technology, Rhodos, vol 2, pp 553–556

    Google Scholar 

  15. Vazirani VV (2001) Approximation algorithms. Springer, Berlin/Heidelberg

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neal E. Young .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Young, N. (2014). Greedy Set-Cover Algorithms. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, Boston, MA. https://doi.org/10.1007/978-3-642-27848-8_175-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27848-8_175-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Online ISBN: 978-3-642-27848-8

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics