Skip to main content

Hippocampus and Entorhinal Complex: Functional Imaging

  • Reference work entry
Encyclopedia of Pain

Synonyms

Entorhinal cortex and hippocampus; Functional imaging; Neuroimaging; Parahippocampal region

Definition

The hippocampus is comprised of the dentate gyrus and the CA1, CA2, and CA3 pyramidal cell fields. The hippocampal formation consists of the hippocampus and the subiculum. The adjacent entorhinal, perirhinal, and parahippocampal cortices comprise the parahippocampal region (Fig. 1). These limbic subregions differ in their cellular organization and connectivity but are commonly implicated in memory and emotion processing.

Hippocampus and Entorhinal Complex: Functional Imaging, Fig. 1
figure 83 figure 83

(Left) Medial view of the human brain outlining the perirhinal cortex (orange); parahippocampal cortex (red); and entorhinal cortex (yellow). (Right) Section of the temporal lobe showing the components of the hippocampal/entorhinal complex in some detail: the dentate gyrus (pale green); the CA1 and CA3 hippocampal fields (green) that make up the hippocampus proper; the subiculum (pink); the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bingel, U., Quante, M., Knab, R., et al. (2002). Subcortical structures involved in pain processing: Evidence from single-trial fMRI. Pain, 99, 313–321.

    PubMed  CAS  Google Scholar 

  • Borras, M. C., Becerra, L., Ploghaus, A., et al. (2004). fMRI measurement of CNS responses to naloxone infusion and subsequent mild noxious thermal stimuli in healthy volunteers. Journal of Neurophysiology, 91, 2723–2733.

    PubMed  CAS  Google Scholar 

  • Derbyshire, S. W. G., Jones, A. K. P., Gyulai, F., et al. (1997). Pain processing during three levels of noxious stimulation produces differential patterns of central activity. Pain, 73, 431–445.

    PubMed  CAS  Google Scholar 

  • Dutar, P., Lamour, Y., & Jobert, A. (1985). Activation of identified septo-hippocampal neurons by noxious peripheral stimulation. Brain Research, 328, 15–21.

    PubMed  CAS  Google Scholar 

  • Greicius, M. D., & Menon, V. (2004). Default-mode activity during a passive sensory task: Uncoupled from deactivation but impacting activation. Journal of Cognitive Neuroscience, 16, 1484–1492.

    PubMed  Google Scholar 

  • McNaughton, N., & Gray, J. A. (2000). Anxiolytic action on the behavioural inhibition system implies multiple types of arousal contribute to anxiety. Journal of Affective Disorders, 61, 161–176.

    PubMed  CAS  Google Scholar 

  • Melzack, R., & Casey, K. L. (1968). Sensory, motivational, and central control determinants of pain. In D. R. Kenshalo (Ed.), The skin senses (pp. 423–439). Springfield: Thomas.

    Google Scholar 

  • Napadow, V., Makris, N., Liu, J., et al. (2005). Effects of electroacupuncture versus manual acupuncture on the human brain as measured by fMRI. Human Brain Mapping, 24, 193–205.

    PubMed  Google Scholar 

  • Pariente, J., White, P., Frackowiak, R. S. J., et al. (2005). Expectancy and belief modulate the neuronal substrates of pain treated by acupuncture. NeuroImage, 25, 1161–1167.

    PubMed  Google Scholar 

  • Ploghaus, A., Tracey, I., Clare, S., et al. (2000). Learning about pain: The neural substrate of the prediction error for aversive events. PNAS, 97, 9281–9286.

    PubMed  CAS  Google Scholar 

  • Ploghaus, A., Narain, C., Beckmann, C. F., et al. (2001). Exacerbation of pain by anxiety is associated with activity in a hippocampal network. Journal of Neuroscience, 21, 9896–9903.

    PubMed  CAS  Google Scholar 

  • Squire, L. R., Stark, C. E. L., & Clark, R. E. (2004). The medial temporal lobe. Annual Review of Neuroscience, 27, 279–306.

    PubMed  CAS  Google Scholar 

  • Wilder-Smith, C. H., Schindler, D., Lovblad, K., et al. (2004). Brain functional magnetic resonance imaging of rectal pain and activation of endogenous inhibitory mechanisms in irritable bowel syndrome patient subgroups and healthy controls. Gut, 53, 1595–1601.

    PubMed  CAS  Google Scholar 

  • Zambreanu, L., Wise, R. G., Brooks, J. C. W., et al. (2005). A role for the brainstem in central sensitisation in humans. Evidence from functional magnetic resonance imaging. Pain, 114, 397–407.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Tracey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Tracey, I., Leknes, S.G. (2013). Hippocampus and Entorhinal Complex: Functional Imaging. In: Gebhart, G.F., Schmidt, R.F. (eds) Encyclopedia of Pain. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28753-4_1763

Download citation

Publish with us

Policies and ethics