Skip to main content

Electrooptic Polymer

  • Reference work entry
  • First Online:
Encyclopedia of Polymeric Nanomaterials
  • 89 Accesses

Synonyms

Electrooptical modulator; Second-order nonlinear optical phenomenon.

Definition

The electrooptics is one of the nonlinear optical (NLO) effects, and in this essay, it is basically second-order NLO effect.

Introduction

In recent broadband network systems, high-speed optical information and data transmission is required. Electrooptic (EO) effect, sometimes called as Pockels effect, is one of the second-order nonlinear optical (NLO) effects where refractive index of materials will be controlled by applying electric field to them. Therefore, the EO material is expected to apply for ultrahigh speed optical switch and/or wide bandwidth optical modulator, both of which will be used in photonic network systems. There are many EO materials including inorganic crystals, semiconductors, organic crystals, and polymers. LiNbO3, a typical EO material that is already used as a practical EO modulator with waveguide structure, has low optical loss and moderate EO coefficient. For external...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee M, Katz HE et al (2002) Broadband modulation of light by using an electro-optic polymer. Science 298:1401

    CAS  Google Scholar 

  2. Yariv A (1975) Quantum optics. Wiley, New York; Shen YR, The principle of nonlinear optics. Wiley & Sons

    Google Scholar 

  3. Singer KD, Sohn JE, Lalama SJ (1986) Second harmonic generation in poled polymer films. Appl Phys Lett 49:248

    CAS  Google Scholar 

  4. Singer KD, Kuzyk MG, Holland WR et al (1988) Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films. Appl Phys Lett 53:1800

    CAS  Google Scholar 

  5. Boltnik RR, Hung Y-C et al (2007) Electrooptic Polymer Ring Resonator Modulation up to 165 GHz. IEEE J Sel Top Quantum Electron 13:104

    Google Scholar 

  6. Dalton LR, Harper AW et al (1995) Synthesis and processing of improved organic second-order nonlinear optical materials for applications in photopnics. Chem Mater 7:1060

    CAS  Google Scholar 

  7. Shi Y, Zhang C, Bechtel JH, Dalton LR et al (2000) Low (sub-1 vilt)halfwave voltage polymeric electro-optic modulators achieved by control of chromophore shape. Science 288:119

    CAS  Google Scholar 

  8. Dalton LR, Sullivan PA, Bale DH (2010) Electric field poled organic electro-optic materials: state of the art and future prospects. Chem Rev 110:25

    CAS  Google Scholar 

  9. Rommel HL et al (2007) Orientation of electro-optic chromophores under poling conditions: a spherical model. J Phys Chem C 111:18765

    CAS  Google Scholar 

  10. Kim T-D et al (2008) Binary chromophore systems in nonlinear optical dendrimers and polymers for large electrooptic activities. J Phys Chem C 112:8091

    CAS  Google Scholar 

  11. Ma H, Chen BQ, Sassa T et al (2001) Highly efficient and thermally stable nonlinear optical dendrimer for electrooptics. J Am Chem Soc 123:986

    CAS  Google Scholar 

  12. Ushiwata T, Okamoto E, Komatsu K, Kaino T (2002) Opt Mater 21:87

    Google Scholar 

  13. Verbiest T, Burland DM et al (1995) Exceptionally thermally stable polyimides for second-order nonlinear optical applications. Science 268:1604

    CAS  Google Scholar 

  14. Ermer S, Lovejoy SM, Bedworth P et al (2002) Low-voltage electro-optic modulation using amorphous polycarbonate host material. Adv Funct Mater 12:605

    CAS  Google Scholar 

  15. Tsuchimori M, Watanabe O et al (1996) Stable second-order optical nonlinearity of urethane-urea copolymers. Jpn J Appl Phys 35:L444

    CAS  Google Scholar 

  16. Luo J, Haller M et al (2004) Nanoscale architectural control and macromolecular engineering of nonlinear optical dendrimers and polymers for electro-optics. J Phys Chem B 108:8523

    CAS  Google Scholar 

  17. Shi Z, Hau S, Luo J et al (2007) Highly efficient diels-alder crosslinkable electro-optic dendrimers for electric-field senseors. Adv Funct Mater 17:2557

    CAS  Google Scholar 

  18. Wulbem JH, Hampe J, Petrov A et al (2009) Electro-optic modulation in slotted resonant photonic crystal heterostructures. Appl Phys Lett 94:241107

    Google Scholar 

  19. Ding R, B-Johnes T, Liu Y et al (2009) Demonstration of a low VÏ€L Modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides. Opt Express 18:15618

    Google Scholar 

  20. Hochberg M, B-Johnes T, Wang G et al (2007) Towards a millivolt optical modulator with nano-slot waveguides. Opt Express 15:8401

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshikuni Kaino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Kaino, T. (2015). Electrooptic Polymer. In: Kobayashi, S., Müllen, K. (eds) Encyclopedia of Polymeric Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29648-2_208

Download citation

Publish with us

Policies and ethics