Skip to main content

NADPH Oxidase in Tissue Repair and Regeneration

  • Reference work entry
  • First Online:
Systems Biology of Free Radicals and Antioxidants

Abstract

Redox homeostasis is a delicate balance maintaining physiological signaling functions of free radicals as well as antioxidant capacity to prevent excess free radical overflow. Disturbance of this redox equilibrium creating oxidative stress can result in cell injury, and this underlies the pathogenesis of many cardiovascular diseases such as myocardial ischemia and reperfusion injury, hypertension, atherosclerosis, brain damage after stroke and traumatic brain injury, as well as loss of vision due to degeneration in the retina. Free radicals such as superoxide and hydrogen peroxide when produced intracellularly at low concentration, can also act as second messengers through redox signaling to regulate physiological processes such as wound healing, angiogenesis, and differentiation of stem cells. Of all the redox enzymes, NADPH oxidase is the only one whose sole function is production of reactive oxygen species (ROS) and appears to have a significant role in modulating tissue repair and regeneration. The shortage of donors for transplantation surgery to treat life-threatening conditions such as lung and heart failure has driven the search for alternative therapeutic strategies. Exploiting the intrinsic regenerative potential of tissues by manipulating cellular mechanisms involved in tissue repair and growth is an attractive and clinically translatable therapeutic strategy to treat late-stage diseases and severe tissue injury. Here we provide a brief overview of the role of NADPH oxidases in regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abid MR, Kachra Z, Spokes KC, Aird WC (2000) NADPH oxidase activity is required for endothelial cell proliferation and migration. FEBS Lett 486:252–256

    Article  CAS  PubMed  Google Scholar 

  • Ago T, Kuroda J, Pain J, Fu C, Li H, Sadoshima J (2010) Upregulation of Nox4 by hypertrophic stimuli promotes apoptosis and mitochondrial dysfunction in cardiac myocytes. Circ Res 106:1253–1264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alom-Ruiz SP, Anilkumar N, Shah AM (2008) Reactive oxygen species and endothelial activation. Antioxid Redox Signal 10(6):1089–1100

    Article  CAS  PubMed  Google Scholar 

  • Al-Shabrawey M, Bartoli M, El-Remessy AB et al (2005) Inhibition of NAD(P)H oxidase activity blocks vascular endothelial growth factor overexpression and neovascularization during ischemic retinopathy. Am J Pathol 167(2):599–607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Babior B (1999) NADPH oxidase: an update. Blood 93:1464–1476

    CAS  PubMed  Google Scholar 

  • Bae YS, Choi MK, Lee WJ (2010) Dual oxidase in mucosal immunity and host-microbe homeostasis. Trends Immunol 31(7):278–287

    Article  CAS  PubMed  Google Scholar 

  • Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  CAS  PubMed  Google Scholar 

  • BelAiba RS, Djordjevic T, Petry A et al (2007) NOX5 variants are functionally active in endothelial cells. Free Radic Biol Med 42:446–459

    Article  CAS  PubMed  Google Scholar 

  • Chan EC, Jiang F, Peshavariya HM, Dusting GJ (2009) Regulation of cell proliferation by NADPH oxidase-mediated signaling: potential roles in tissue repair, regenerative medicine and tissue engineering. Pharmacol Ther 122(2):97–108

    Article  CAS  PubMed  Google Scholar 

  • Chan E, van Wijngaarden P, Peshavariya H, Liu G, Jiang F, Dusting G (2013) NADPH oxidase Nox2 facilitates retinal neovascularisation in a mouse model of oxygen-induced retinopathy. J Hypertens 30(e-S1):e272

    Google Scholar 

  • Chopp M, Zhang ZG, Jiang Q (2007) Neurogenesis, angiogenesis, and MRI indices of functional recovery from stroke. Stroke 38(Suppl 2):827–831

    Article  PubMed  Google Scholar 

  • Clempus RE, Griendling KK (2006) Reactive oxygen species signaling in vascular smooth muscle cells. Cardiovasc Res 71:216–225

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clempus RE, Sorescu D, Dikalova AE et al (2007) Nox4 is required for maintenance of the differentiated vascular smooth muscle cell phenotype. Arterioscler Thromb Vasc Biol 27:42–48

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Craige SM, Chen K, Pei Y et al (2011) NADPH oxidase 4 promotes endothelial angiogenesis through endothelial nitric oxide synthase activation. Circulation 124(6):731–740

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cucoranu I, Clempus R, Dikalova A et al (2005) NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res 97:900–907

    Article  CAS  PubMed  Google Scholar 

  • Curnutte JT, Babior BM (1974) Biological defense mechanisms. The effect of bacteria and serum on superoxide production by granulocytes. J Clin Invest 53:1662–1672

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Datla SR, Peshavariya H, Dusting GJ, Mahadev K, Goldstein BJ, Jiang F (2007) Important role of Nox4 type NADPH oxidase in angiogenic responses in human microvascular endothelial cells in vitro. Arterioscler Thromb Vasc Biol 27:2319–2324

    Article  CAS  PubMed  Google Scholar 

  • Dernbach E, Urbich C, Brandes RP, Hofmann WK, Zeiher AM, Dimmeler S (2004) Antioxidative stress-associated genes in circulating progenitor cells: evidence for enhanced resistance against oxidative stress. Blood 104(12):3591–3597

    Article  CAS  PubMed  Google Scholar 

  • Dickinson BC, Peltier J, Stone D, Schaffer DV, Chang CJ (2011) Nox2 redox signaling maintains essential cell populations in the brain. Nat Chem Biol 7(2):106–112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Diebold I, Petry A, Hess J, Gorlach A (2010) The NADPH oxidase subunit NOX4 is a new target gene of the hypoxia-inducible factor-1. Mol Biol Cell 21(12):2087–2096

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dusting GJ, Peshavariya HM, Chan EC, Liu RGS, Jiang F (2011) Cell signaling for angiogenesis in tissue engineering TERMIS Asia Pacific Meeting 2011

    Google Scholar 

  • Fischer H (2009) Mechanisms and function of DUOX in epithelia of the lung. Antioxid Redox Signal 11(10):2453–2465

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Furukawa S, Fujita T, Shimabukuro M et al (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114(12):1752–1761

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garrido-Urbani S, Jemelin S, Deffert C et al (2011) Targeting vascular NADPH oxidase 1 blocks tumor angiogenesis through a PPARalpha mediated mechanism. PLoS One 6(2):e14665

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Griendling KK, Sorescu D, Ushio-Fukai M (2000) NAD(P)H oxidase role in cardiovascular biology and disease. Circ Res 86:494–501

    Article  CAS  PubMed  Google Scholar 

  • Hachisuka H, Dusting GJ, Abberton KM, Morrison WA, Jiang F (2008) Role of NADPH oxidase in tissue growth in a tissue engineering chamber in rats. J Tissue Eng Regen Med 2(7):430–435

    Article  CAS  PubMed  Google Scholar 

  • Harrison DG, Gongora MC (2009) Oxidative stress and hypertension. Med Clin North Am 93(3):621–635

    Article  CAS  PubMed  Google Scholar 

  • Hecker L, Vittal R, Jones T et al (2009) NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med 15:1077–1081

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Herbert SP, Stainier DY (2011) Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat Rev Mol Cell Biol 12(9):551–564

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Higuchi M, Dusting GJ, Peshavariya H, Jiang F, Hsiao ST, Chan EC, Liu GS (2012) Differentiation of human adipose-derived stem cells into fat involves reactive oxygen species and forkhead box O1 mediated upregulation of antioxidant enzymes. Stem Cells Dev 22:878–888

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hsu S, Chen C, Liu G et al (2012) Tumorigenesis and prognostic role of hepatoma-derived growth factor in human gliomas. J Neurooncol 107(1):101–109

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Kim HJ, Chang EJ et al (2009) IL-17 stimulates the proliferation and differentiation of human mesenchymal stem cells: implications for bone remodeling. Cell Death Differ 16(10):1332–1343

    Article  CAS  PubMed  Google Scholar 

  • Jiang F, Drummond GR, Dusting GJ (2004) Suppression of oxidative stress in the endothelium and vascular wall. Endothelium 11:79–88

    Article  CAS  PubMed  Google Scholar 

  • Jiang F, Zhang G, Hashimoto I et al (2008) Neovascularization in an arterio-venous loop-containing tissue engineering chamber: role of NADPH oxidase. J Cell Mol Med 12(5B):2062–2072

    Article  CAS  PubMed  Google Scholar 

  • Jiang F, Zhang Y, Dusting GJ (2011) NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev 63(1):218–242

    Article  CAS  PubMed  Google Scholar 

  • Kanda Y, Hinata T, Kang SW, Watanabe Y (2011) Reactive oxygen species mediate adipocyte differentiation in mesenchymal stem cells. Life Sci 89(7–8):250–258

    Article  CAS  PubMed  Google Scholar 

  • Kane NM, Xiao Q, Baker AH, Luo Z, Xu Q, Emanueli C (2011) Pluripotent stem cell differentiation into vascular cells: a novel technology with promises for vascular re(generation). Pharmacol Ther 129(1):29–49

    Article  CAS  PubMed  Google Scholar 

  • Kaplan N, Urao N, Furuta E et al (2011) Localized cysteine sulfenic acid formation by vascular endothelial growth factor: role in endothelial cell migration and angiogenesis. Free Radic Res 45(10):1124–1135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim KS, Choi HW, Yoon HE, Kim IY (2010) Reactive oxygen species generated by NADPH oxidase 2 and 4 are required for chondrogenic differentiation. J Biol Chem 285(51):40294–40302

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kishida KT, Hoeffer CA, Hu D, Pao M, Holland SM, Klann E (2006) Synaptic plasticity deficits and mild memory impairments in mouse models of chronic granulomatous disease. Mol Cell Biol 26(15):5908–5920

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kleinschnitz C, Grund H, Wingler K et al (2010) Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration. PLoS Biol 8(9)

    Google Scholar 

  • Knapp LT, Klann E (2002) Role of reactive oxygen species in hippocampal long-term potentiation: contributory or inhibitory? J Neurosci Res 70(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Kopp HG, Ramos CA, Rafii S (2006) Contribution of endothelial progenitors and proangiogenic hematopoietic cells to vascularization of tumor and ischemic tissue. Curr Opin Hematol 13(3):175–181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krupinski J, Kaluza J, Kumar P, Kumar S, Wang JM (1994) Role of angiogenesis in patients with cerebral ischemic stroke. Stroke 25(9):1794–1798

    Article  CAS  PubMed  Google Scholar 

  • Kuroda J, Ago T, Matsushima S, Zhai P, Schneider MD, Sadoshima J (2010) NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart. Proc Natl Acad Sci USA 107(35):15565–15570

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laflamme MA, Murry CE (2011) Heart regeneration. Nature 473(7347):326–335

    Article  CAS  PubMed  Google Scholar 

  • Lai CF, Seshadri V, Huang K et al (2006) An osteopontin-NADPH oxidase signaling cascade promotes pro-matrix metalloproteinase 9 activation in aortic mesenchymal cells. Circ Res 98(12):1479–1489

    Article  CAS  PubMed  Google Scholar 

  • Lassegue B, Griendling KK (2010) NADPH oxidases: functions and pathologies in the vasculature. Arterioscler Thromb Vasc Biol 30(4):653–661

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lassègue B, Sorescu D, Szöcs K et al (2001) Novel gp91phox homologues in vascular smooth muscle cells nox1 mediates angiotensin II–induced superoxide formation and redox-sensitive signaling pathways. Circ Res 88:888–894

    Article  PubMed  Google Scholar 

  • Lee NK, Karsenty G (2008) Reciprocal regulation of bone and energy metabolism. J Musculoskelet Neuronal Interact 8(4):351

    CAS  PubMed  Google Scholar 

  • Leto TL, Morand S, Hurt D, Ueyama T (2009) Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases. Antioxid Redox Signal 11(10):2607–2619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li J, Stouffs M, Serrander L et al (2006) The NADPH oxidase NOX4 drives cardiac differentiation: role in regulating cardiac transcription factors and MAP kinase activation. Mol Biol Cell 17:3978–3988

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lokmic Z, Stillaert F, Morrison WA, Thompson EW, Mitchell GM (2007) An arteriovenous loop in a protected space generates a permanent, highly vascular, tissue-engineered construct. FASEB J 21:511–522

    Article  CAS  PubMed  Google Scholar 

  • Mahadev K, Wu X, Zilbering A, Zhu L, Lawrence JT, Goldstein BJ (2001) Hydrogen peroxide generated during cellular insulin stimulation is integral to activation of the distal insulin signaling cascade in 3 T3-L1 adipocytes. J Biol Chem 276(52):48662–48669

    Article  CAS  PubMed  Google Scholar 

  • Mandal CC, Ganapathy S, Gorin Y et al (2010) Reactive oxygen species derived from Nox4 mediate BMP2 gene transcription and osteoblast differentiation. Biochem J 433(2):393–402

    Article  CAS  Google Scholar 

  • McCann SK, Dusting GJ, Roulston CL (2008) Early increase of Nox4 NADPH oxidase and superoxide generation following endothelin-1-induced stroke in conscious rats. J Neurosci Res 86(11):2524–2534

    Article  CAS  PubMed  Google Scholar 

  • Menger B, Vogt PM, Kuhbier JW, Reimers K (2010) Applying amphibian limb regeneration to human wound healing: a review. Ann Plast Surg 65(5):504–510

    Article  CAS  PubMed  Google Scholar 

  • Miller AA, Drummond GR, Schmidt HH, Sobey CG (2005) NADPH oxidase activity and function are profoundly greater in cerebral versus systemic arteries. Circ Res 97(10):1055–1062

    Article  CAS  PubMed  Google Scholar 

  • Miller AA, Dusting GJ, Roulston CL, Sobey CG (2006) NADPH-oxidase activity is elevated in penumbral and non-ischemic cerebral arteries following stroke. Brain Res 1111:111–116

    Article  CAS  PubMed  Google Scholar 

  • Morita K, Miyamoto T, Fujita N et al (2007) Reactive oxygen species induce chondrocyte hypertrophy in endochondral ossification. J Exp Med 204(7):1613–1623

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morritt AN, Bortolotto SK, Dilley R et al (2007) Cardiac tissue engineering in an in vivo vascularized chamber. Circulation 115:353–360

    Article  PubMed  Google Scholar 

  • Mukherjea D, Jajoo S, Sheehan K et al (2011) NOX3 NADPH oxidase couples transient receptor potential vanilloid 1 to signal transducer and activator of transcription 1-mediated inflammation and hearing loss. Antioxid Redox Signal 14(6):999–1010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nabeebaccus A, Zhang M, Shah AM (2011) NADPH oxidases and cardiac remodelling. Heart Fail Rev 16(1):5–12

    Article  CAS  PubMed  Google Scholar 

  • Pagano PJ, Clark JK, Cifuentes-Pagano ME, Clark SM, Callis GM, Quinn MT (1997) Localization of a constitutively active, phagocyte-like NADPH oxidase in rabbit aortic adventitia: enhancement by angiotensin II. Proc Natl Acad Sci USA 94:14483–14488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pao M, Wiggs EA, Anastacio MM et al (2004) Cognitive function in patients with chronic granulomatous disease: a preliminary report. Psychosomatics 45(3):230–234

    Article  PubMed  Google Scholar 

  • Peh GS, Beuerman RW, Colman A, Tan DT, Mehta JS (2011) Human corneal endothelial cell expansion for corneal endothelium transplantation: an overview. Transplantation 91(8):811–819

    Article  PubMed  Google Scholar 

  • Peshavariya H, Liu GS, Chang CWT, Jiang F, Chan EC, Dusting GJ (2013) Prostacyclin regulates NADPH oxidase 4 in human endothelial cells thereby promoting cytoprotection. J Hypertens 30(e-S1):e278

    Google Scholar 

  • Porrello ER, Mahmoud AI, Simpson E et al (2011) Transient regenerative potential of the neonatal mouse heart. Science 331(6020):1078–1080

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Robbins SL, Kumar V, Cotran RS (2010) Robbins and Cotran pathologic basis of disease, 8th edn. Saunders/Elsevier, Philadelphia

    Google Scholar 

  • Santos CX, Anilkumar N, Zhang M, Brewer AC, Shah AM (2011) Redox signaling in cardiac myocytes. Free Radic Biol Med 50(7):777–793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sauer H, Rahimi G, Hescheler J, Wartenberg M (2000) Role of reactive oxygen species and phosphatidylinositol 3-kinase in cardiomyocyte differentiation of embryonic stem cells. FEBS Lett 476:218–223

    Article  CAS  PubMed  Google Scholar 

  • Schmelter M, Ateghang B, Helmig S, Wartenberg M, Sauer H (2006) Embryonic stem cells utilize reactive oxygen species as transducers of mechanical strain-induced cardiovascular differentiation. FASEB J 20:E294–E306

    Article  CAS  Google Scholar 

  • Schmidt HH, Wingler K, Kleinschnitz C, Dusting G (2012) NOX4 is a Janus-faced reactive oxygen species generating NADPH oxidase. Circ Res 111(1):e15–e16; author reply e17–8

    Article  CAS  PubMed  Google Scholar 

  • Schroder K, Wandzioch K, Helmcke I, Brandes RP (2009) Nox4 acts as a switch between differentiation and proliferation in preadipocytes. Arterioscler Thromb Vasc Biol 29(2):239–245

    Article  PubMed  CAS  Google Scholar 

  • Schroder K, Zhang M, Benkhoff S et al (2012) Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase. Circ Res 110(9):1217–1225

    Article  PubMed  CAS  Google Scholar 

  • Shen Q, Goderie SK, Jin L et al (2004) Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304(5675):1338–1340

    Article  CAS  PubMed  Google Scholar 

  • Sorescu D, Weiss D, Lassègue B et al (2002) Superoxide production and expression of Nox family proteins in human atherosclerosis. Circulation 105:1429–1435

    Article  CAS  PubMed  Google Scholar 

  • Su B, Mitra S, Gregg H et al (2001) Redox regulation of vascular smooth muscle cell differentiation. Circ Res 89:39–46

    Article  CAS  PubMed  Google Scholar 

  • Sui R, Liao X, Zhou X, Tan Q (2011) The current status of engineering myocardial tissue. Stem Cell Rev 7(1):172–180

    Article  PubMed  Google Scholar 

  • Suzukawa K, Miura K, Mitsushita J et al (2000) Nerve growth factor-induced neuronal differentiation requires generation of Rac1-regulated reactive oxygen species. J Biol Chem 275(18):13175–13178

    Article  CAS  PubMed  Google Scholar 

  • Taylor CJ, Weston R, Dusting GJ, Roulston CL (2013) NADPH oxidase and angiogenesis following Endothelin-1 induced stroke in rats: role for Nox2 in brain repair. Brain Sci 3(1):294–317

    Article  CAS  Google Scholar 

  • Tee R, Lokmic Z, Morrison WA, Dilley RJ (2010) Strategies in cardiac tissue engineering. ANZ J Surg 80(10):683–693

    Article  PubMed  Google Scholar 

  • Thirunavukkarasu M, Adluri RS, Juhasz B et al (2012) Novel role of NADPH oxidase in ischemic myocardium: a study with Nox2 knockout mice. Funct Integr Genomics 12(3):501–514

    Article  CAS  PubMed  Google Scholar 

  • Tojo T, Ushio-Fukai M, Yamaoka-Tojo M, Ikeda S, Patrushev N, Alexander RW (2005) Role of gp91phox (Nox2)-containing NAD(P)H oxidase in angiogenesis in response to hindlimb ischemia. Circulation 111:2347–2355

    Article  CAS  PubMed  Google Scholar 

  • Tojo N, Kashiwagi Y, Nishitsuka K et al (2010) Interactions between vitreous-derived cells and vascular endothelial cells in vitreoretinal diseases. Acta Ophthalmol 88(5):564–570

    Article  CAS  PubMed  Google Scholar 

  • Touyz RM, Callera GE (2009) A new look at the eye: aldosterone and mineralocorticoid receptors as novel targets in retinal vasculopathy. Circ Res 104(1):9–11

    Article  CAS  PubMed  Google Scholar 

  • Tsatmali M, Walcott EC, Makarenkova H, Crossin KL (2006) Reactive oxygen species modulate the differentiation of neurons in clonal cortical cultures. Mol Cell Neurosci 33(4):345–357

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Urao N, Inomata H, Razvi M et al (2008) Role of nox2-based NADPH oxidase in bone marrow and progenitor cell function involved in neovascularization induced by hindlimb ischemia. Circ Res 103(2):212–220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ushio-Fukai M (2006) Redox signaling in angiogenesis: role of NADPH oxidase. Cardiovasc Res 71:226–235

    Article  CAS  PubMed  Google Scholar 

  • Ushio-Fukai M (2007) VEGF signaling through NADPH oxidase-derived ROS. Antioxid Redox Signal 9(6):731–739

    Article  CAS  PubMed  Google Scholar 

  • Ushio-Fukai M, Urao N (2009) Novel role of NADPH oxidase in angiogenesis and stem/progenitor cell function. Antioxid Redox Signal 11(10):2517–2533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ushio-Fukai M, Tang Y, Fukai T et al (2002) Novel role of gp91(phox)-containing NAD(P)H oxidase in vascular endothelial growth factor-induced signaling and angiogenesis. Circ Res 91:1160–1167

    Article  CAS  PubMed  Google Scholar 

  • Vallet P, Charnay Y, Steger K et al (2005) Neuronal expression of the NADPH oxidase NOX4, and its regulation in mouse experimental brain ischemia. Neuroscience 132:233–238

    Article  CAS  PubMed  Google Scholar 

  • Wagner B, Ricono JM, Gorin Y et al (2007) Mitogenic signaling via platelet-derived growth factor beta in metanephric mesenchymal cells. J Am Soc Nephrol 18(11):2903–2911

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Zhang Z, Wang Y, Zhang R, Chopp M (2004) Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke 35(7):1732–1737

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson-Berka JL, Tan G, Jaworski K, Miller AG (2009) Identification of a retinal aldosterone system and the protective effects of mineralocorticoid receptor antagonism on retinal vascular pathology. Circ Res 104(1):124–133

    Article  CAS  PubMed  Google Scholar 

  • Wong RC, Tellis I, Jamshidi P, Pera M, Pebay A (2007) Anti-apoptotic effect of sphingosine-1-phosphate and platelet-derived growth factor in human embryonic stem cells. Stem Cells Dev 16(6):989–1001

    Article  CAS  PubMed  Google Scholar 

  • Xiao Q, Luo Z, Pepe AE, Margariti A, Zeng L, Xu Q (2009) Embryonic stem cell differentiation into smooth muscle cells is mediated by Nox4-produced H2O2. Am J Physiol Cell Physiol 296(4):C711–C723

    Article  CAS  PubMed  Google Scholar 

  • Zafari AM, Ushio-Fukai M, Akers M et al (1998) Role of NADH/NADPH oxidase–derived H2O2 in angiotensin II–induced vascular hypertrophy. Hypertension 32:488–495

    Article  CAS  PubMed  Google Scholar 

  • Zhang RL, Zhang ZG, Chopp M (2008) Ischemic stroke and neurogenesis in the subventricular zone. Neuropharmacology 55(3):345–352

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang M, Brewer AC, Schroder K et al (2010) NADPH oxidase-4 mediates protection against chronic load-induced stress in mouse hearts by enhancing angiogenesis. Proc Natl Acad Sci USA 107(42):18121–18126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang WJ, Wei H, Tien YT, Frei B (2011a) Genetic ablation of phagocytic NADPH oxidase in mice limits TNFalpha-induced inflammation in the lungs but not other tissues. Free Radic Biol Med 50(11):1517–1525

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang XZ, Huang X, Qiao JH, Zhang JJ, Zhang MX (2011b) Inhibition of hypoxia-induced retinal neovascularization in mice with short hairpin RNA targeting Rac1, possibly via blockading redox signaling. Exp Eye Res 92(6):473–481

    Article  CAS  PubMed  Google Scholar 

  • Zhao M, Wimmer A, Trieu K, Discipio RG, Schraufstatter IU (2004) Arrestin regulates MAPK activation and prevents NADPH oxidase-dependent death of cells expressing CXCR2. J Biol Chem 279(47):49259–49267

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132(4):645–660

    Article  CAS  PubMed  Google Scholar 

  • Zhao W, Zhao T, Chen Y, Ahokas RA, Sun Y (2009) Reactive oxygen species promote angiogenesis in the infarcted rat heart. Int J Exp Pathol 90:621–629

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory J. Dusting .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Chan, E.C., Liu, G.S., Roulston, C.L., Lim, S.Y., Dusting, G.J. (2014). NADPH Oxidase in Tissue Repair and Regeneration. In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30018-9_97

Download citation

Publish with us

Policies and ethics