Skip to main content

Active Matrix for OLED Displays

  • Living reference work entry
  • First Online:
Handbook of Visual Display Technology
  • 700 Accesses

Abstract

Significant progress has been made in the past two decades in AMOLED displays. As current driven devices, OLEDs present tremendous challenge in developing the right active matrix backplanes. Various technologies have been and continue to be investigated for driving AMOLEDs. The start of mass production of small size AMOLEDs by Samsung in 2007 established LTPS as the leading backplane technology. However, the scaling of AMOLEDs for large TV applications demands a low-cost backplane technology. This need has propelled the intensive R&D work in oxide TFT backplane, leading to its commercialization in LG’s 55″ OLED TV in early 2013. In this chapter, active matrix for OLEDs will be discussed based on the type of backplane technologies. This is followed by several other considerations in designing the active matrix such as the type of transistors and image sticking. In the end, a brief summary and outlook for future research and development will be provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

2T1C:

2 transistors and 1 capacitor

AMLCD:

Active matrix liquid crystal display

AMOLED:

Active matrix organic light emitting diode

a-Si:

Amorphous silicon

ELA:

Excimer laser annealing

LTPS:

Low temperature poly-silicon

MIC:

Metal induced crystallization

PECVD:

Plasma enhanced chemical vapor deposition

RTA:

Rapid thermal annealing

SLS:

Sequential lateral solidification

SPC:

Solid phase crystallization

TFT:

Thin film transistor

μc-Si:

Microcrystalline silicon

Further Reading

  • Arai T, Morosawa N, Tokunaga K, Terai Y, Fukumoto E, Fujimori T, Nakayama T, Yamaguchi T, Sasaoka T (2010) Highly reliable oxide-semiconductor TFT for AM-OLED display. SID 10 Digest, p 1033

    Google Scholar 

  • Choi S, Kwon O, Chung H (2004) An improved voltage programmed pixel structure for large size and high resolution AMOLED displays. SID04 Digest, p 260

    Google Scholar 

  • Choi H-S, Choi J-S, Hong S-K, Kim B-K, Ha Y-M (2007a) LTPS technology for improving the performance of AMOLEDs. IMID’07 Digest, p 1781

    Google Scholar 

  • Choi JB, Chang Y-J, Shim S-H, Chung I-D, Park KW, Park KC, Moon KC, Min H-K, Kim C-W, Gadkaree KP, Couillard JG, Cites JS, Ahn SE (2007b) AMOLED based on silicon-on-glass (SiOG) technology. SID 07 Digest, p 1378

    Google Scholar 

  • Choi JB, Chang YJ, Park CH, Kim YI, Eom J, Na HD, Chung ID, Jin SH, Song YR, Choi B, Kim HS, Park K, Kim CW, Souk JH, Kim Y, Jung B (2008) Sequential lateral solidification (SLS) process for large area AMOLED. SID 08 Digest, p 97

    Google Scholar 

  • Choi M, Kim S, Huh J, Kim C, Nam H (2014) Advanced ELA for large-size AMOLED displays. SID 14 Digest, p 13

    Google Scholar 

  • Fish D, Young N, Deane S, Steer A, George D, Giraldo A, Lifka H, Gielkens O, Oepts W (2005) Optical feedback for AMOLED display conpensation using LTPS and a-Si:H technologies. SID 05 Digest, p 1340

    Google Scholar 

  • FBD International 2010, Japan, Nov 10–12, 2010

    Google Scholar 

  • Girotra KS, Souk JH, Chung K, Kim S, Kim S, Kim BJ, Yang S-H, Choi B, Goh J, Song Y-R, Choi Y-M (2006) A 14.1 inch AMOLED display using highly stable PECVD based microcrystalline silicon TFT backplane. SID 06 Digest, p 1972

    Google Scholar 

  • Han CW, Kim OH, Bae SJ, Lee MK, Nam WJ, Tak YH, Kang IB, Chung IJ (2008) 15-inch XGA dual-plate OLED display (DOD) based on amorphous Silicon (a-Si) TFT backplane. SID 08 Digest

    Google Scholar 

  • Hara A, Tkeuchi F, Takei M, Yoshino K, Suga K, Sasaki N (2001) AM-LCD’01 Digest, p 227

    Google Scholar 

  • Harrison C, Garden D, Horne I (2014) Flexible AMOLED display driven by organic TFTs on a plastic substrate. SID 14 Digest, p 256

    Google Scholar 

  • Hatano M, Shiba T, Ohkura M (2002) Selectively enlarging laser crystallization technology for high and uniform performance poly-Si TFTs. SID ‘02 Digest, p 158

    Google Scholar 

  • Hayashi H, Nakazaki Y, Izumi T, Sadaki A, Nakamura T, Takeda E, Saitoh T, Goto M, Tahezawa H (2014) Highly reliable InGaZnO thin film transistor backplane for 55-inch 4K2K organic light-emitting diode display. SID 14 Digest, p 853

    Google Scholar 

  • Hekmatshoar B, Cherenack KH, Wagner S, Sturn JC (2008) Amporphous silicon thin-film transistors with DC saturation current half-life of more than 100 years. IEDM, p 89

    Google Scholar 

  • Hong SK, Kim BK, Ha YM (2007) LTPS technology for improving the uniformity of AMOLEDs. SID07 Digest, p 1366

    Google Scholar 

  • Hong S, Jeon C, Song S, Kim J, Lee J, Kim D, Jeong S, Nam H, Lee J, Yang W, Park S, Tak Y, Ryu J, Kim C, Ahn B, Yeo S (2014) Development of commercial flexible AMOLEDs SID Dig Tech Papers, p 334

    Google Scholar 

  • Jang J, Choi M, Kim B, Lee W, Seok M, Ryu D (2010) Robust TFT backplane for flexible AMOLED. SID Dig Tech Papers, p 260

    Google Scholar 

  • Jeong JK, Chung HJ, Mo YG, Kim HD (2008) A new era of oxide thin-film transistor for large-sized AMOLED displays. Inf Disp 24(9):20

    Google Scholar 

  • Jung SH, Lee HK, Kim CY, Yoon SY, Kim CD, Kang IB (2008) 15-inch AMOLED display with SPC TFTs and a symmetric driving method. SID08 Digest, p 101

    Google Scholar 

  • Kim T, Kim S, Yu S, Woo K, Ha W, Kim B, Ahn B (2014) A novel power saving technology for OLED TV with external TFT compensation. SID 14 Digest, p 728

    Google Scholar 

  • Komiya N, Oh CY, Eom KM, Jeong JT, Chung HK, Choi SM, Kwom OK (2003) Comparison of Vth compensation ability among voltage programming circuits for AMOLED panels. IDW03 Digest, p 275

    Google Scholar 

  • Lee JH, Park HS, Choi SH, Lee WK, Han MK, Goh JC, Choi J, Chung K (2007) Highly stable a-Si:H TFT pixel for large area AMOLED by employing both Vth storing and the negative bias annealing. SID Symp Digest, p 165

    Google Scholar 

  • Ma R, Rajan K, Hack M, Brown JJ, Cheon JH, Kim SH, Kang MH, Lee WHG, Jang J (2008) Highly flexible low power consumption AMOLED displays on ultra thin stainless steel substrate. SID Dig Tech Papers, p 425

    Google Scholar 

  • Ma R, Rajan K, Silvernail J, Urbanik K, Paynter J, Mandlik P, Hack M, Brown JJ, Yoo JS, Kim YC, Kim IH, Byun SC, Jung SH, Kim JM, Yoon SY, Kim CD, Kang IB, Tognoni K, Anderson R, Huffman D (2009) Wearable 4-inch QVGA full color video flexible AMOLEDs for rugged applications. SID Dig Tech Papers, p 96

    Google Scholar 

  • Matsueda Y, Shin DY, Chung HK (2008) AMOLED technologies for uniform image and sufficient lifetime of image sticking. SID 08 Digest, p 9

    Google Scholar 

  • Matsuo T, Mori S, Imaya A (2014) Advantages of IGZO semiconductor. SID 14 Digest, p 83

    Google Scholar 

  • Nomoto K (2010) Development of flexible displays driven by organic TFTs. SID 10 Digest, p 1155

    Google Scholar 

  • Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H (2004) Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432:488–492

    Article  Google Scholar 

  • Oh C, Ozawa M, Matsumura M (1998) A novel phase-modulated excimer laser crystallization method of silicon thin films. Jpn J Appl Phys 37:L492–L495

    Article  Google Scholar 

  • Park SHK, Ryu M, Hwang CS, Yang S, Byun C, Lee JI, Shin J, Yoon SM, Chu HY, Cho KI, Lee K, Oh MS, Im S (2008) Transparent ZnO thin film transistor for the application of high aperture ratio bottom emission AM-OLED display. SID 08 Digest, p 629

    Google Scholar 

  • Shin H, Takasugi S, Park K, Choi S, Jeong Y, Kim H, Oh C, Ahn B (2014) Technological progress of panel design and compensation methods for large-size UHD OLED TVs. SID 14 Digest, p 720

    Google Scholar 

  • Sirringhaus H (2014) Organic field-effect transistors: the path beyond amorphous silicon. Adv Mater 26(9):1319–1335

    Article  Google Scholar 

  • Sohn Y, Jang J (2007) Giant-grain poly-Si by CW laser annealing of a-Si with cylindrical microlens array. SID 07 Digest, p 76

    Google Scholar 

  • Song YW, Hwang KH, Yoon SG, Ha JH, Kim KN, Lee JH, Kim SC (2010) LTPS-based transparent AM OLED. SID 10 Digest, p 1340

    Google Scholar 

  • Stewart R (2010) Active matrix OLED pixel design. SID 10 Digest, p 790

    Google Scholar 

  • Urabe T, Sasaoka T, Tatsuki K, Takaki J (2007) Technological evolution for large screen size active matrix OLED display. SID 07 Digest, p 161

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiqing Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Ma, R. (2015). Active Matrix for OLED Displays. In: Chen, J., Cranton, W., Fihn, M. (eds) Handbook of Visual Display Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35947-7_80-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35947-7_80-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-35947-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics