Skip to main content

Alignment Properties of Liquid Crystals

  • Living reference work entry
  • First Online:
Handbook of Visual Display Technology
  • 186 Accesses

Abstract

This chapter begins by outlining the main types of liquid crystal surface alignment and common device geometries and then goes on to describe how both uniform and patterned surface alignment can be achieved via conventional techniques such as rubbing and photo-alignment. Finally, the chapter concludes with information on bistable alignment, bulk alignment techniques (such as field alignment and polymer networks), and how to align non-nematic phases such as cholesterics and smectics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ECB:

Electrically controlled birefringence

HAN:

Hybrid-aligned nematic

IPS:

In-plane switching

LCD:

Liquid crystal display

OCB:

Optically compensated bend

TFTs:

Thin-film transistors

TN:

Twisted nematic

ULH:

Uniform lying helix

VAN:

Vertically aligned nematic

Further Reading

  • Bos P, Koehler K, Beran R (1984) Mol Cryst Liq Cryst 113:329

    Article  Google Scholar 

  • Bryan-Brown G, Brown CV, Jones JC, Wood EL, Sage IC, Brett P, Rudin J (1997) 5.3: Grating aligned bistable nematic device. In: Proceedings of society for information display international symposium. Digest of technical papers, vol XXVIII, Boston, pp 37–40

    Google Scholar 

  • Carbone G, Salter P, Elston SJ, Raynes EP, de Sio L, Ferjani S, Strangi G, Umeton C, Bartolino R (2009) Appl Phys Lett 95:011102

    Article  Google Scholar 

  • Cognard J (1982) Molecular crystals and liquid crystals. Gordon and Breach, New York, Supplement 1, p 1

    Google Scholar 

  • Dessaud N, Raynes EP (2001) Proceedings of international display workshops IDW, Nagoya, pp 41–44

    Google Scholar 

  • Dozov I, Nobili M, Durand G (1997) Appl Phys Lett 70(9):1179

    Article  Google Scholar 

  • Drzaic PS (1995) Liquid crystal dispersions. World Scientific, Singapore, pp 392–399

    Book  Google Scholar 

  • Gass P, Stevenson H, Bray R, Walton H, Smith N, Terashita S, Tillin M (2003) Sharp Tech J 85:24

    Google Scholar 

  • Gibbons W, Shannon P, Sun S, Swetlin B (1991) Nature 351:49

    Article  Google Scholar 

  • Guyon E, Pieranski P, Boix M (1973) Appl Eng Sci Lett 1:19

    Google Scholar 

  • Gwag JS, Fukuda J, Yoneya M, Yokoyama H (2007) Appl Phys Lett 91:073504

    Article  Google Scholar 

  • Hachiya S, Tomoike K, Yuasa K, Togawa S, Sekiya T, Takahashi K, Kawasaki K (1993) J Soc Inf Disp 1:295

    Article  Google Scholar 

  • Janning J (1979) Appl Phys Lett 21:173

    Article  Google Scholar 

  • Kim J-H, Yoneye M, Yamamoto J, Yokoyama H (2001) Appl Phys Lett 78:3055

    Article  Google Scholar 

  • Mauguin C (1911) Bull Soc Fr Min 34:71

    Google Scholar 

  • Minoura K, Asaoka Y, Satoh E, Deguchi K, Satoh T, Ihara I, Fujiwara S, Miyata A, Itoh Y, Gyoten S, Matsuda N, Kubota Y (2009) Making a mobile display using polarizer-free reflective LCDs and ultra-low-power driving technology. Inf Dis 25:12–16

    Google Scholar 

  • O’Neill M, Kelly SM (2000) J Phys D Appl Phys 33:R67–R84

    Article  Google Scholar 

  • Pidduck AJ, Bryan-Brown GP, Haslam SD, Bannister R (1996) Liq Cryst 21:759

    Article  Google Scholar 

  • Rapini A, Papoular MJ (1969) J Phys (France) Colloq 30:C4–C54

    Google Scholar 

  • Raynes EP (1974) EI Lett 10:141–142

    Article  Google Scholar 

  • Rieker TP, Clark NA, Smith GS, Parmar DS, Sirota EB, Safinya CR (1987) Phys Rev Lett 59:2658

    Article  Google Scholar 

  • Salter PS, Elston SJ, Raynes EP, Parry-Jones LA (2009) Jpn J Appl Phys 48:101302

    Article  Google Scholar 

  • Schadt M, Schmitt K, Hozinkov V, Chigrinov V (1992) Jpn J Appl Phys 31:2155

    Article  Google Scholar 

  • Sonin AA (1995) The surface physics of liquid crystals. Gordon and Breach, Amsterdam

    Google Scholar 

  • Sze-Yan Yeung F, Xie F-C, Kwok H-S, Wan J, Tsui O, Sheng P (2005) 23.2: High pretilt angles by nano-structured surfaces and their applications. In: SID international symposium digest of technical papers, vol 36, pp 1080

    Google Scholar 

  • Takatoh K, Hasegawa M, Koden M, Itoh N, Hasegawa R, Sakamoto M (2005) Alignment technologies and applications of liquid crystal devices. Taylor & Francis, London

    Book  Google Scholar 

  • Tomlin MG (1997) J Opt Technol 64:458

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lesley Parry-Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Parry-Jones, L. (2014). Alignment Properties of Liquid Crystals. In: Chen, J., Cranton, W., Fihn, M. (eds) Handbook of Visual Display Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35947-7_86-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35947-7_86-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-35947-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics