Skip to main content

Pediatric Respiratory Physiology

  • Living reference work entry
  • First Online:
Pediatric Surgery

Abstract

This chapter provides information about structural and biochemical lung development, which starts as early as the fifth week of gestational age but can last up to 4 years postnatally. During the intrauterine period, fetal breathing movements and lung fluid are essential factors for regular lung maturation and growth. Transition from intrauterine to extrauterine life is a critical phase, during which clearance of lung fluid and lung expansion due to air filling on the one hand and establishment of pulmonary blood flow due to a marked reduction of pulmonary vascular resistance on the other hand are the key features of this process. In contrast to older infants and adults, respiratory physiology of neonates is characterized by a relatively small airway diameter enhancing airway resistance, a higher chest wall compliance, and weakness of respiratory muscles, making the newborn much more vulnerable to respiratory failure. Dysfunctional transition may result in respiratory distress and persistent pulmonary hypertension, both of them still being important causes of morbidity and mortality. Their present-day management includes prenatal steroid treatment, intratracheal surfactant application, mechanical ventilation, and a differentiated medical therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abu-Shaweesh JM. Maturation of respiratory reflex responses in the fetus and neonate. Semin Neonatol. 2004;9:169–80.

    Article  PubMed  Google Scholar 

  • Boddy K, Mantell CD. Observations of fetal breathing movements transmitted through maternal abdominal wall. Lancet. 1972;2:1219–20.

    Article  CAS  PubMed  Google Scholar 

  • Darnall RA. The role of CO2 and central chemoreception in the control of breathing in the fetus and the neonate. Respir Physiol Neurobiol. 2010;173:201–12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dawes GS. Breathing before birth in animals and man. An essay in developmental medicine. New Engl J Med. 1974;290(10):557–9.

    Article  CAS  PubMed  Google Scholar 

  • Dawson JA, Kamlin COF, Vento M, Wong C, Cole TJ, Donath SM, Davis PG, Morley CJ. Defining the reference range for oxygen saturation for infants after birth. Pediatrics. 2010;125(6):e1340–7.

    Article  PubMed  Google Scholar 

  • de Vries JIP, Visser GHA, Prechtl HFR. Fetal behaviour in early pregnancy. Eur J Obstet Gynecol Reprod Biol. 1986;21(5–6):271–6.

    Article  PubMed  Google Scholar 

  • Dhillon R. The management of neonatal pulmonary hypertension. Arch Dis Child Fetal Neonatal Ed. 2012;97(3):F223–8.

    Article  PubMed  Google Scholar 

  • Dunn MS, Kaempf J, de Klerk A, de Klerk R, Reilly M, Howard D, Ferrelli K, O Orell J, Soll RF, Vermont Oxford Network DRM Study Group. Randomized trial comparing 3 approaches to the initial respiratory management of preterm neonates. Pediatrics. 2011;128:e1069–76.

    Article  PubMed  Google Scholar 

  • Florido J, Cortes E, Gutierrez M, Soto VM, Miranda MT, Navarrete L. Analysis of fetal breathing movements at 30–38 weeks of gestation. J Perinat Med. 2005;33(1):38–41.

    Article  PubMed  Google Scholar 

  • Fujiwara T, Maeta H, Chida S, Morita T, Watabe Y, Abe T. Artificial surfactant therapy in hyaline-membrane disease. Lancet. 1980;1:55–9.

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Raj JU. Regulation of the pulmonary circulation in the fetus and newborn. Physiol Rev. 2010;90:1291–335.

    Article  CAS  PubMed  Google Scholar 

  • Greer JJ, Funk GD, Ballanyi K. Preparing for the first breath: prenatal maturation of respiratory control. J Physiol. 2006;570(Pt3):437–44.

    Article  CAS  PubMed  Google Scholar 

  • Haagsman HP, van Golde LMG. Synthesis and assembly of lung surfactant. Annu Rev Physiol. 1991;53:441–64.

    Article  CAS  PubMed  Google Scholar 

  • Hall SM, Haworth SG. Conducting pulmonary arteries: structural adaptation to extrauterine life in the pig. Cardiovasc Res. 1987;21(3):208–16.

    Article  CAS  PubMed  Google Scholar 

  • Hallman M. The surfactant system protects both fetus and newborn. Neonatology. 2013;103(4):320–6.

    Article  CAS  PubMed  Google Scholar 

  • Harding R, Hooper SB. Regulation of lung expansion and lung growth before birth. J Appl Physiol. 1996;81:209–24.

    Article  CAS  PubMed  Google Scholar 

  • Inanlou MR, Baguma-Nibasheka M, Kablar B. The role of fetal breathing-like movements in lung organogenesis. Histol Histopathol. 2005;20:1261–6.

    CAS  PubMed  Google Scholar 

  • Jobe AH. What is RDS in 2012? Early Hum Dev. 2012;88(Suppl 2):S42–4.

    Article  PubMed  Google Scholar 

  • Kliegmann RM, Behrmann RE, Jenson HB, Stanton BF. Nelson Textbook of Pediatrics, 18th Edition, Chapter 101, Respiratory Tract Disorders, 731–741, Chapter 370, Respiratory System, 1719–1731, Saunders Elsevier, Philadelphia U.S.; 2007.

    Google Scholar 

  • Koeppen BM, Stanton BA. Physiology, Sixth Edition, Chapter 20, Structure and Function of the Respiratory System, 417–429, Berne&Levy, Mosby Elsevier, Maryland Heights, Missouri U.S.; 2008.

    Google Scholar 

  • Konduri GG, Kim UO. Advances in the diagnosis and management of persistent pulmonary hypertension of the newborn (PPHN). Pediatr Clin N Am. 2009;56(3):579–600.

    Article  Google Scholar 

  • Kribs A. How best to administer surfactant to VLBW infants? Arch Dis Child Fetal Neonatal Ed. 2011;96:F238–40.

    Article  PubMed  Google Scholar 

  • Kuipers IM, Maertzdorf WJ, De Jong DS, Hanson MA, Blanco CE. Initiation and maintenance of continuous breathing at birth. Pedtric Res. 1997;42(2):163–8.

    Article  CAS  Google Scholar 

  • Lakshminrusimha A, Steinhorn RH. Pulmonary vascular biology during neonatal transition. Clin Perinatol. 1999;26(39):601–19.

    CAS  PubMed  Google Scholar 

  • Mathew OP. Apnea of prematurity: pathogenesis and management strategies. J Perinatol. 2011;31:302–10.

    Article  CAS  PubMed  Google Scholar 

  • McCray PB, Bettencourt JD, Bastacky J. Developing bronchopulmonary epithelium of the human fetus secretes fluid. Am J Phys. 1992;262(3 Pt 1):L270–9.

    CAS  Google Scholar 

  • McNamara PJ, Shivananda SP, Sahni M, Freeman D, Taddio A. Pharmacology of milrinone in neonates with persistent pulmonary hypertension of the newborn and suboptimal response to inhaled nitric oxide. Pediatr Crit Care Med. 2013;14(1):74–84.

    Article  PubMed  Google Scholar 

  • Mendelson CR, Boggaram V. Hormonal control of the surfactant system in fetal lung. Annu Rev Physiol. 1991;53:415–40.

    Article  CAS  PubMed  Google Scholar 

  • Mohamed WA, Ismail M. A randomized, double-blind, placebo-controlled, prospective study of bosentan for the treatment of persistent pulmonary hypertension of the newborn. J Perinatol. 2012;32(8):608–13.

    Article  CAS  PubMed  Google Scholar 

  • More K, Athalye-Jape GK, Rao SC, Patole SK. Endothelin receptor antagonists for persistent pulmonary hypertension in term and late preterm infants. Cochrane Database Syst Rev. 2016;8:CD010531.

    Google Scholar 

  • Morrisey EE, Hogan BLM. Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell. 2010;18:8–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy JD, Rabinovitch M, Goldstein JD, Reid LM. The structural basis of persistent pulmonary hypertension of the newborn infant. J Pediatr. 1981;98(6):962–7.

    Article  CAS  PubMed  Google Scholar 

  • Nicolaides KH, Economides DL, Soothill PW. Blood gases, pH, and lactate in appropriate- and small-for-gestational-age fetuses. Am J Obstet Gynecol. 1989;161(4):996–1001.

    Article  CAS  PubMed  Google Scholar 

  • Olver RE, Walters DV, Wilson SM. Developmental regulation of lung liquid transport. Annu Rev Physiol. 2004;66:77–101.

    Article  CAS  PubMed  Google Scholar 

  • Orgeig S, Hiemstra PS, Veldhuizen EJA, Casals C, Clark HW, Haczku A, Knudsen L, Possmayer F. Recent advances in alveolar biology: evolution and function of alveolar proteins. Respir Physiol Neurobiol Mol Integr Physiol. 2010;173(Suppl):S43–54.

    Article  CAS  Google Scholar 

  • Orgeig S, Morrison JL, Daniels CB. Prenatal development of the pulmonary surfactant system and the influence of hypoxia. Respir Physiol Neurobiol. 2011;178(1):129–45.

    Article  CAS  PubMed  Google Scholar 

  • Porta NFM, Steinhorn RH. Pulmonary vasodilator therapy in the NICU: inhaled nitric oxide, sildenafil, and other pulmonary vasodilating agents. Clin Perinatol. 2012;39(1):149–64.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberts D, Dalzell SR. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2006;3:CD004454.

    Google Scholar 

  • Ruano R, Yoshisaki CT, DA Silva MM, Ceccon MEJ, Grasi MS, Tannuri U, Zugaib M. A randomized controlled trial of fetal endoscopic tracheal occlusion versus postnatal management of severe isolated congenital diaphragmatic hernia. Ultrasound Obstet Gynecol. 2012;39:20–7.

    Article  CAS  PubMed  Google Scholar 

  • Saunders RA, Milner AD. Pulmonary pressure/volume relationships during the last phase of delivery and the first postnatal breaths in human subjects. J Pediatr. 1978;93(4):667–73.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt B, Anderson PJ, Doyle LW, Dewey D, Grunau RE, Asztalos EV, Davis PG, Tin W, Moddemann D, Solimano A, Ohlsson A, Barrington KJ, Roberts RS. Survival without disability to age 5 years after neonatal caffeine therapy for apnea of prematurity. JAMA. 2012;307:275–82.

    Article  CAS  PubMed  Google Scholar 

  • Steinhorn RH, Fineman J, Kusic-Pajic A, Cornelisse P, Gehin M, Nowbakht P, Pierce CM, Beghetti M, FUTURE-4 study investigators. Bosentan as adjunctive therapy for persistent pulmonary hypertension of the newborn: results of the randomized multicenter placebo-controlled exploratory trial. J Pediatr. 2016;177:90–96.e3.

    Article  CAS  PubMed  Google Scholar 

  • Stoll BJ, Hansen NI, Bell EF, Shankaran S, Laptook AR, Walsh MC, Hale EC, Newman NS, Schibler K, Carlo WA, Kennedy KA, Poindexter BB, Finer NN, Ehrenkranz RA, Duara S, Sanchez PJ, O’Shea M, Goldberg RN, Van Meurs KP, Faix RG, Phelps DL, Frantz ID, Watterberg KL, Saha S, Das A, Higgins RD. Neonatal outcomes of extremely preterm infants from the NICHD neonatal research network. Pediatrics. 2010;126:443–56.

    Article  PubMed  PubMed Central  Google Scholar 

  • SUPPORT Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network. Early CPAP versus surfactant in extremely preterm infants. N Engl J Med. 2010a;362:1970–9.

    Article  PubMed Central  Google Scholar 

  • SUPPORT Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network. Target ranges of oxygen saturation in extremely preterm infants. N Engl J Med. 2010b;362:1959–69.

    Article  PubMed Central  Google Scholar 

  • Sweet DG, Carnielli V, Greisen G, Hallman M, Ozek E, Plavka R, Saugstad OD, Simeoni U, Speer CP, Vento M, Halliday HL. European consensus guidelines on the management of neonatal respiratory distress syndrome in preterm infants – 2013 update. Neonatology. 2013;103:353–68.

    Article  PubMed  Google Scholar 

  • Te Pas AB, Davis PG, Hooper SB, Morley CJ. From liquid to air: breathing after birth. J Pediatr. 2008;152(5):607–11.

    Article  Google Scholar 

  • Vyas H, Field D, Milner AD, Hopkin IE. Determinants of the first inspiratory volume and functional residual capacity at birth. Pediatr Pulmonol. 1986;2(4):189–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bettina Bohnhorst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag GmbH Germany

About this entry

Cite this entry

Bohnhorst, B., Peter, C. (2016). Pediatric Respiratory Physiology. In: Puri, P. (eds) Pediatric Surgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38482-0_12-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38482-0_12-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38482-0

  • Online ISBN: 978-3-642-38482-0

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics