Skip to main content

Flows in Nanochannels

  • Living reference work entry
  • First Online:
Encyclopedia of Continuum Mechanics
  • 181 Accesses

Synonyms

Nanoflows

Definitions

Nanochannel can be defined as a channel with at least one cross section dimension in the nanometer range, i.e., of 1–100 nm, while its length considerably exceeds the value of this dimension. A nanometer (nm) is one billionth of a meter, or 1/1,000,000,000 m. If the length is smaller, then such channels are called nanopores. Nanotubes are called nanochannels with circular cross ection. The cross section of a nanochannel may be arbitrary and it may vary proportionally to its length. In particular, a cross section along its entire length may be constant. Flows in nanochannels can be caused by differences in the pressure applied at their respective ends, i.e., by the pressure gradient. Such flows are referred to as pressure driven or Poiseuille flows. Another way to induce a flow in nanochannel is to use electrokinetic effects and to apply an electric field. Nanochannels may carry mass, heat, or electrical charges (ions). Nanofluidics, which has become a new...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allen M, Tildesley D (1989) Computer simulations of liquids. Clarendon, Oxford

    MATH  Google Scholar 

  • Christenson HK, Gruen DWR, Horn RG, Israelachvili JN (1987) Structuring in liquid alkanes between solid surfaces: force measurements and mean-field theory. J Chem Phys 87(3):1834–1841

    Article  Google Scholar 

  • Cosserat E (1909) Theorie des Corps Deformables. A.Herman, Paris

    MATH  Google Scholar 

  • Delhommelle J, Evans D (2002) Poiseille flow of micropolar fluid. Mol Phys 100(17):2857–2865

    Article  Google Scholar 

  • Eringen A (1966) Theory of micropolar fluids. J Math Mech 16(1):1–16

    MathSciNet  Google Scholar 

  • Helmholtz H (1853) Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern, mit Anwendung auf die thierisch-elektrischen Versuche. Annalen der Physik und Chemie 165(6):211–233

    Article  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Article  Google Scholar 

  • Kucaba-Pietal A (2004a) Microchannels flow modelling with the micropolar fluid theory. Bull Pol Ac Tech 52(3):209–214

    MATH  Google Scholar 

  • Kucaba-Pietal A (2004b) Modelowanie mikroprzeplywow na gruncie teorii plynow mikropolarnych. Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszow

    Google Scholar 

  • Kucaba-Pietal A, Peradzynski Z, Walenta Z (2009) MD computer simulation of water flows in nanochannels. Bull Pol Ac Tech 57(1):1–7

    MATH  Google Scholar 

  • Landau LD, Lifshitz EM (1959) Fluid mechanics (volume 6 of a course of theoretical physics). Pergamon Press, Oxford

    Google Scholar 

  • Rapaport D (1994) Shear-induced order and rotation in pipe flow of short-chain molecules. EPL 26(6):401–406

    Article  Google Scholar 

  • Todd B, Evans D (1995) The heat flux vector for highly unhomogeneous non equilibrium fluids in very narrow pores. J Chem Phys 103:9804–9809

    Article  Google Scholar 

  • Travis K, Evans D (1997) Molecular spin in a fluid undergoing Poiseuille flow. Phys Rev E 55(2):1566–1572

    Article  Google Scholar 

  • Travis K, Todd B, Evans D (1997) Departure from Navier-Stokes hydrodynamics in confirned liquids. Phys Rev E 55(4):4288–4295

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Kucaba-Pietal .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kucaba-Pietal, A. (2018). Flows in Nanochannels. In: Altenbach, H., Öchsner, A. (eds) Encyclopedia of Continuum Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53605-6_168-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53605-6_168-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53605-6

  • Online ISBN: 978-3-662-53605-6

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics