Skip to main content

Heat Flow Measurements, Continental

  • Reference work entry
  • First Online:
Encyclopedia of Solid Earth Geophysics

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Continental heat flow is the flux density of heat being conducted to the surface of continents. It is expressed as mW m−2. Heat flow is calculated as the product of temperature gradient (mK m−1 or °C per km – a scale appropriate to the dimensions of geological formations) and thermal conductivity (W m−1 K−1).

Introduction

Terrestrial heat flow, Q, is estimated from the product of temperature gradient (Г) and thermal conductivity (K), according to:

$$ Q = K.\Gamma $$
(1)

In practice, Г is derived from point measurements of temperature at two or more discrete depths. K can be determined in situ, but for routine determinations of heat flow, the most practical approach is to measure it on the surface, either in the field or in a laboratory.

Beardsmore and Cull (2001) reviewed the various options for applying equation 1. These usually involve combining the harmonic mean thermal conductivity and temperature gradient over discrete intervals of the temperature profiles. Where there...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Antriasian, A. M., 2010. The Portable Electronic Divided Bar (PEDB): a tool for measuring thermal conductivity of rock samples. In Proceedings, World Geothermal Congress 2010, Bali, Indonesia, 25–29 April 2010. 7 pp. See also http://www.hotdryrocks.com/content/view/130/73/

  • Beardsmore, G. R., and Cull, J. P., 2001. Crustal Heat Flow: A Guide to Measurement and Modeling. Cambridge: Cambridge University Press, 324 pp.

    Book  Google Scholar 

  • Beck, A. E., 1957. A steady-state method for the rapid measurement of the thermal conductivity of rocks. Journal of Scientific Instruments, 34, 186–189.

    Article  Google Scholar 

  • Blackwell, D. D., and Steele, J. L., 1989. Thermal conductivity of sedimentary rocks: measurements and significance. In Naeser, N. D., and McCulloh, T. H. (eds.), Thermal History of Sedimentary Basins. New York: Springer, pp. 13–36.

    Chapter  Google Scholar 

  • Burkhardt, H., Honarmend, H., and Pribnow, D., 1990. First Results of Thermal Conductivity Measurements with a Borehole Tool for Great Depths, KTB Report 90–6a. New York: Springer, pp. 245–258.

    Google Scholar 

  • Doig, R., Saull, V. A., and Butler, R. A., 1961. A new borehole thermometer. Journal of Geophysical Research, 66, 4263–4264.

    Article  Google Scholar 

  • Förster, A., Schrötter, J., Merriam, D. F., and Blackwell, D. D., 1997. Application of optical-fiber temperature logging – an example in a sedimentary environment. Geophysics, 62, 1107–1113.

    Article  Google Scholar 

  • Freifeld, B. M., Finsterle, S., Onstott, T. C., Toole, P., and Pratt, L. M., 2008. Ground surface temperature reconstructions: using in situ estimates for thermal conductivity acquired with a fiber-optic distributed thermal perturbation sensor. Geophysical Research Letters, 35, L14309, doi:10.1029/2008GL034762.

    Article  Google Scholar 

  • Henninges, J., Zimmermann, G., Büttner, G., Schrötter, J., Erbas, K., and Huenges, E., 2005. Wireline distributed temperature measurements and permanent installations behind casing. In Proceedings World Geothermal Congress, Antalya, Turkey, 24–29 April 2005, 5 pp.

    Google Scholar 

  • Horai, K. I., 1971. Thermal conductivity of rock-forming minerals. Journal of Geophysical Research, 76, 1278–1308.

    Article  Google Scholar 

  • Ito, Y., Saito, T., and Nagumeo, M., 1977. Shotherm QTM measurement of Rock Specimens, Shotherm Sales Information #111: Abstracted and translated with permission from the original paper in Japanese:Shotherm QTM measurement of Rock Specimens, Chinetsu, 14, 21.

    Google Scholar 

  • McGee, and Thomas, D., 1988. Principles and Methods of Temperature Measurement. New York: Wiley-Interscience, 608 pp.

    Google Scholar 

  • Popov, Y. A., Pribnow, D. F. C., Sass, J. H., Williams, C. F., and Burkhardt, H., 1999. Characterization of rock thermal conductivity by high-resolution optical scanning. Geothermics, 28, 253–276.

    Article  Google Scholar 

  • Pribnow, D. F. C., and Sass, J. H., 1995. Determination of thermal conductivity for deep boreholes. Journal of Geophysical Research B, 100, 9981–9994.

    Article  Google Scholar 

  • Sass, J. H., Lachenbruch, A. H., and Munroe, R. J., 1971. Thermal conductivity of rocks from measurements on fragments and its application to heat-flow determinations. Journal of Geophysical Research, 76, 3391–3401.

    Article  Google Scholar 

  • Sass, J. H., Kennelly, J. P., Jr., Wendt, W. E., Moses, T. H., Jr., and Ziagos, J. P. 1979. In Situ determination of heat flow in unconsolidated sediments, U.S. Geological Survey Open-File Report, 79–593, 73pp. Available in digital form as http://pubs.er.usgs.gov/usgspubs/ofr/ofr79593

  • Sass, J. H., Kennelly, J. P., Wendt, W. E., Moses, T. H., Jr., and Ziagos, J. P., 1981. In situ determination of heat flow in unconsolidated sediments. Geophysics, 46, 76–83.

    Article  Google Scholar 

  • Sass, J. H., Kennelly, J. P., Jr., Smith, E. P., and Wendt, W. E., 1984. Laboratory line-source methods for the measurement of thermal conductivity of rocks near room temperature. U.S. Geological Survey Open-File Report, 84–91, 20pp. Available in digital form as http://pubs.er.usgs.gov/usgspubs/ofr/ofr8491

  • Selker, J. S., Thévenaz, L., Huwald, H., Mallet, A., Luxemburg, W., van de Giesen, N., Stejskal, M., Zeman, J., Westhoff, M., and Parlange, M. B., 2006. Distributed fiber-optic temperature sensing for hydrologic systems. Water Resources Research, 42, W12202, doi:doi:10.1029/2006WR005326.

    Google Scholar 

  • Suto, Y., Sakuma, S., Takahashi, H., Hatakeyama, N., and Henfling, J., 2008. Temperature memory gauge survey and estimation of formation temperature of the USDP-4 conduit hole at Unzen Volcano, Japan. Journal of Volcanology and Geothermal Research, 175(1–2), 20–27.

    Article  Google Scholar 

  • Tew, W. L., and Strouse, G. F., 2001. Standard Reference Material 1750: Standard Platinum Resistance Thermometers, 13.8033 K to 429.7485 K, NIST Special Publication 260–139, U.S.Government Printing Office, Washington, D.C., 37 pp. Specific information on RTD devices is best obtained by entering “resistance temperature devices” into an Internet Search Engine. An excellent contemporary source is http://www.omega.com/temperature/Z/TheRTD.html).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Sass .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Sass, J.H., Beardsmore, G. (2011). Heat Flow Measurements, Continental. In: Gupta, H.K. (eds) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8702-7_72

Download citation

Publish with us

Policies and ethics