Skip to main content

Nanowire FET Simulations Based on the Nonequilibrium Green’s Function Formalism

  • Living reference work entry
  • First Online:
Encyclopedia of Nanotechnology

Synonyms

Nanowire-based field effect transistor (NWFET); Quantum kinetics; Realtime Green’s function approach

Definition

The nonequilibrium Green’s function formalism (NEGF) is a quantum kinetic approach to nonequilibrium electronic transport in nanoelectronic devices. In principle, it is an exact many-body quantum mechanical approach which is able to describe Coulomb interaction and scattering effects in particular. In numerical implementations for the simulation of realistic device structures, however, the Coulomb interaction is often taken into account in terms of a mean field approximation, combined with a decoupled self-energy approximation.

Nanowire Field Effect Transistor

The continued downscaling of the geometric dimensions of metal-oxide-semiconductor field-effect transistors (MOSFET) [1] has been propelled by Moore’s law over the last 40 years, i.e., by the promise of an exponential growth of the number of MOSFETs that fit on a single chip, by a strongly increasing circuit...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Sze, S.M., Lee, M.-K.: Semiconductor Devices: Physics and Technologies. Wiley, New York (2012)

    Google Scholar 

  2. Roy, K., Mukhopadhyay, S., Mahmoodi-Meimand, H.: Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proc. IEEE 91, 305 (2003)

    Article  Google Scholar 

  3. Lo, S.-H., Buchanan, D.A., Taur, Y., Wang, W.: Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFETs. IEEE Trans. Electron. Dev. 18, 209 (1997)

    Article  Google Scholar 

  4. Tsutsui, G., Saitoh, M., Nagumo, T., Hiramoto, T.: Impact of SOI thickness fluctuation on threshold voltage variation in ultra-thin body SOI MOSFETs. IEEE Trans. Nanotechnol. 4, 369 (2005)

    Article  Google Scholar 

  5. Knoch, J., Lengeler, B., Appenzeller, J.: Quantum simulations of an ultrashort channel single-gated n-MOSFET on SOI. IEEE Trans. Electron. Dev. 49, 1212 (2002)

    Article  Google Scholar 

  6. Auth, C., et al.: A 22 nm high performance and low-power CMOS technology featuring fully-depleted TriGate transistors, self-aligned contacts and high density MIM capacitors. 2012 VLSI Symp., 131 (2012)

    Google Scholar 

  7. Auth, C.P., Plummer, J.D.: Scaling theory for cylindrical, fully-depleted, surrounding-gate MOSFET’s. IEEE Electron. Dev. Lett. 18, 74 (1997)

    Article  Google Scholar 

  8. Knoch, J., Riess, W., Appenzeller, J.: Outperforming the conventional scaling rules in the quantum-capacitance limit. IEEE Electron. Dev. Lett. 29, 372 (2008)

    Article  Google Scholar 

  9. Knoch, J.: One-dimensional field-effect transistors. In: Jiannian, Y., Zhai, T. (eds.) One-Dimensional Nanostructures: Principles and Applications. Wiley, Hoboken (2012)

    Google Scholar 

  10. Bjoerk, M.T., Schmid, H., Knoch, J., Riel, H., Riess, W.: Dopant deactivation in silicon nanostructures. Nature Nanotechnol. 4, 103 (2009)

    Article  Google Scholar 

  11. Knoch, J., Zhang, M., Mantl, S., Appenzeller, J.: On the performance of single-gated ultrathin body SOI Schottky-barrier MOSFETs. IEEE Trans. Electron. Dev. 53, 1669 (2006)

    Article  Google Scholar 

  12. Pikus, F.G., Likharev, K.K.: Nanoscale field-effect transistor: an ultimate size analysis. Appl. Phys. Lett. 71, 3661 (1997)

    Article  Google Scholar 

  13. Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  14. Ferry, D.K., Goodnick, S.M.: Transport in Nanostructures. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  15. Lake, R., Klimeck, G., Bowen, R.C., Jovanovic, D.: Single and multiband modeling of quantum electron transport through layered semiconductor devices. J. Appl. Phys. 81, 7845 (1997)

    Article  Google Scholar 

  16. Schäfer, W., Wegener, M.: Semiconductor Optics and Transport Phenomena. Springer, Berlin (2002)

    Book  Google Scholar 

  17. Haug, H., Jauho, A.-P.: Quantum Kinetics in Transport and Optics of Semiconductors. Springer, New York (1998)

    Google Scholar 

  18. Vogl, P., Hjalmarson, H.P., Dow, J.D.: A Semi-empirical tight-binding theory of the electronic structure of semiconductors. J. Phys. Chem. Solids 44, 365 (1983)

    Article  Google Scholar 

  19. Støvneng, J.A., Lipavský, P.: Multiband tight-binding approach to tunneling in semiconductor heterostructures – application to gamma-X transfer in GaAs. Phys. Rev. B 49, 16494 (1994)

    Article  Google Scholar 

  20. Indlekofer, K.M., Knoch, J., Appenzeller, J.: Quantum kinetic description of Coulomb effects in one-dimensional nanoscale transistors. Phys. Rev. B 72, 125308 (2005)

    Article  Google Scholar 

  21. Indlekofer, K.M., Knoch, J., Appenzeller, J.: Understanding Coulomb effects in nanoscale Schottky-barrier FETs. IEEE Trans. Electron. Dev. 54, 1502 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Michael Indlekofer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Indlekofer, K.M., Knoch, J. (2015). Nanowire FET Simulations Based on the Nonequilibrium Green’s Function Formalism. In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6178-0_100943-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6178-0_100943-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6178-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics