Skip to main content

Nanotechnology Applications in Polymerase Chain Reaction (PCR)

  • Living reference work entry
  • First Online:
Encyclopedia of Nanotechnology
  • 257 Accesses

Synonyms

Nucleic acid amplification; Oligonucleotide amplification

Definition

Polymerase chain reaction (PCR) is the most prevalent technology used in modern molecular biology research. Generally, it is a technique to amplify the amount of a piece of DNA with a specific sequence. Although the PCR technique is mature, improvement of its efficiency is still an emerging area of research. Recently, nanotechnology is getting more attention in this application. Several nanometer-sized materials such as carbon nanotubes, gold nanoparticles, quantum dots, and metal oxide nanoparticles have been employed.

Introduction

The polymerase chain reaction (PCR) technique is a series of chemical processes to exponentially amplify the number of a specific DNA sequence, producing hundreds of thousands of copies of DNA from a low original sample concentration. This revolutionary technique was first developed by Dr. Kary Mullis in 1983 [1]. Since then, it has been broadly utilized in medical, biomedical,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Mullis, K., et al.: Specific enzymatic amplification of DNA in vitro – the polymerase chain-reaction. Cold Spring Harb. Symp. Quant. Biol. 51, 263–273 (1986)

    Article  Google Scholar 

  2. Saiki, R.K., et al.: Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle-cell anemia. Science 230(4732), 1350–1354 (1985)

    Article  Google Scholar 

  3. Saiki, R.K., et al.: Primer-directed enzymatic amplification of DNA with a thermostable DNA-polymerase. Science 239(4839), 487–491 (1988)

    Article  Google Scholar 

  4. http://www.transparencymarketresearch.com/pressrelease/pcr-technologies.htm

  5. Kellogg, D.E., Sninsky, J.J., Kwok, S.: Quantitation of HIV-1 proviral DNA relative to cellular DNA by the polymerase chain-reaction. Anal. Biochem. 189(2), 202–208 (1990)

    Article  Google Scholar 

  6. Mackay, I.M., Arden, K.E., Nitsche, A.: Real-time PCR in virology. Nucleic Acids Res. 30(6), 1292–1305 (2002)

    Article  Google Scholar 

  7. Stemmer, W.P.C., et al.: Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene 164(1), 49–53 (1995)

    Article  Google Scholar 

  8. Vincent, M., Xu, Y., Kong, H.M.: Helicase-dependent isothermal DNA amplification. EMBO Rep. 5(8), 795–800 (2004)

    Article  Google Scholar 

  9. Chou, Q., et al.: Prevention of pre-PCR mis-priming and primer dimerization improves low-copy-number amplifications. Nucleic Acids Res. 20(7), 1717–1723 (1992)

    Article  Google Scholar 

  10. Herman, J.G., et al.: Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. U. S. A. 93(18), 9821–9826 (1996)

    Article  Google Scholar 

  11. Newton, C.R., et al.: Analysis of any point mutation in DNA – the amplification refractory mutation system (arms). Nucleic Acids Res. 17(7), 2503–2516 (1989)

    Article  Google Scholar 

  12. Bing, D.H., Sawosik, T.M., Word, C.J.: Assay performance results with the AmpliType(R) PM PCR amplification and typing kit. Crime Lab. Dig. 23(2), 27–45 (1996)

    Google Scholar 

  13. Khan, Z., Poetter, K., Park, D.J.: Enhanced solid phase PCR: mechanisms to increase priming by solid support primers. Anal. Biochem. 375(2), 391–393 (2008)

    Article  Google Scholar 

  14. Cui, D.X., et al.: Effects of single-walled carbon nanotubes on the polymerase chain reaction. Nanotechnology 15(1), 154–157 (2004)

    Article  Google Scholar 

  15. Zhang, Z.Z., et al.: Aqueous suspension of carbon nanotubes enhances the specificity of long PCR. Biotechniques 44(4), 537–545 (2008)

    Article  Google Scholar 

  16. Shi, X.Y., et al.: Effect of surface charge of polyethyleneimine-modified multiwalled carbon nanotubes on the improvement of polymerase chain reaction. Nanoscale 3(4), 1741–1747 (2011)

    Article  Google Scholar 

  17. Yi, C.Q., et al.: Interactions between carbon nanotubes and DNA polymerase and restriction endonucleases. Nanotechnology 18(2), 6 (2007)

    Article  Google Scholar 

  18. Li, H.K., et al.: Nanoparticle PCR: nanogold-assisted PCR with enhanced specificity. Angew. Chem. Int. Ed. 44(32), 5100–5103 (2005)

    Article  Google Scholar 

  19. Pan, J.K., et al.: Nanogold-assisted multi-round polymerase to chain reaction (PCR). J. Nanosci. Nanotechnol. 7(12), 4428–4433 (2007)

    Article  Google Scholar 

  20. Li, M., et al.: Enhancing the efficiency of a PCR using gold nanoparticles. Nucleic Acids Res. 33(21), 10 (2005)

    Article  Google Scholar 

  21. Yuan, L.F., He, Y.J.: Effect of surface charge of PDDA-protected gold nanoparticles on the specificity and efficiency of DNA polymerase chain reaction. Analyst 138(2), 539–545 (2013)

    Article  Google Scholar 

  22. Shi, X.Y., et al.: Effect of the surface functional groups of dendrimer-entrapped gold nanoparticles on the improvement of PCR. Electrophoresis 33(16), 2598–2603 (2012)

    Article  Google Scholar 

  23. Shi, X.Y., et al.: A highly effective polymerase chain reaction enhancer based on dendrimer-entrapped gold nanoparticles. Analyst 137(1), 223–228 (2012)

    Article  Google Scholar 

  24. Haber, A.L., et al.: Addition of gold nanoparticles to real-time PCR: effect on PCR profile and SYBR Green I fluorescence. Anal. Bioanal. Chem. 392(5), 887–896 (2008)

    Article  Google Scholar 

  25. Vu, B.V., Litvinov, D., Willson, R.C.: Gold nanoparticle effects in polymerase chain reaction: favoring of smaller products by polymerase adsorption. Anal. Chem. 80(14), 5462–5467 (2008)

    Article  Google Scholar 

  26. Yang, W.C., et al.: Evaluation of gold nanoparticles as the additive in real-time polymerase chain reaction with SYBR green I dye. Nanotechnology 19(25), 9 (2008)

    Google Scholar 

  27. Wan, W.J., Yeow, J.T.W.: The effects of gold nanoparticles with different sizes on polymerase chain reaction efficiency. Nanotechnology 20(32), 5 (2009)

    Article  Google Scholar 

  28. Ma, L., et al.: Maximizing specificity and yield of PCR by the quantum dot itself rather than property of the quantum dot surface. Biochimie 91(8), 969–973 (2009)

    Article  Google Scholar 

  29. Wang, L.B., et al.: Effects of quantum dots in polymerase chain reaction. J. Phys. Chem. B 113(21), 7637–7641 (2009)

    Article  Google Scholar 

  30. Xun, Z., Zhao, X.Y., Guan, Y.F.: Improved thermal cycling durability and PCR compatibility of polymer coated quantum dot. Nanotechnology 24(35), 355504 (2013)

    Article  Google Scholar 

  31. Zhang, Z.Z., et al.: Quantum dots trigger hot-start effects for pfu-based polymerase chain reaction. J. Exp. Nanosci. 9(10), 1051–1063 (2014)

    Article  Google Scholar 

  32. Zhang, Z.Z., et al.: A hot start alternative for high-fidelity DNA polymerase amplification mediated by quantum dots. Acta Biochim. Biophys. Sin. 46(6), 502–511 (2014)

    Article  Google Scholar 

  33. Khaliq, A., et al.: Enhancement in the efficiency of polymerase chain reaction by TiO2 nanoparticles: crucial role of enhanced thermal conductivity. Nanotechnology 21(25), 11 (2010)

    Article  Google Scholar 

  34. Ventimiglia, G., Petralia, S., Barbuzzi, T.: Polymerase chain reaction efficiency improved by water soluble beta-cyclodextrins capped platinum nanoparticles. Mater. Sci. Eng. C Mater. Biol. Appl. 32(4), 848–850 (2012)

    Article  Google Scholar 

  35. Liang, Y., et al.: C-60 affects DNA replication in vitro by decreasing the melting temperature of DNA templates. Carbon 47(6), 1457–1465 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuo-Sheng Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Ma, KS., Ma, Y., Chiou, F. (2015). Nanotechnology Applications in Polymerase Chain Reaction (PCR). In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6178-0_356-2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6178-0_356-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6178-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics