Skip to main content

Geohazards: Coastal Disasters

  • Reference work entry
  • First Online:
Encyclopedia of Marine Geosciences

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

We define the term “hazard” as a potential source of harm, where “harm” is defined as the “injury or damage to the health of people, or damage to property or the environment” following the definition as given by ISO/IEC (2014). The term “risk” is defined as a “combination of the probability of occurrence of harm and the severity of that harm” (ISO/IEC, 2014). Furthermore, the term “risk” may be expressed as a function of hazard, exposure, and vulnerability. A geohazard is a geological state that may lead to widespread damage presenting severe threats to humans, property, and the natural and built environment. A coastal geohazard is a natural physical phenomenon usually associated with seacoasts but to a limited extent also along lakeshores, where the initiating process of the disaster may originate at great distances from the point of impact.

Introduction

There are numerous geohazards which affect coastal regions, including beach erosion, landslide/cliff collapse, wave...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Adger, W. N., Hughes, T. P., Folke, C., Carpenter, S. R., and Rockström, J., 2005. Social-ecological resilience to coastal disasters. Science, 309(5737), 1036–1039.

    Article  Google Scholar 

  • Atwater, B. F., 1987. Evidence for great Holocene earthquakes along the outer coast of Washington state. Science, 236(4804), 942–944.

    Article  Google Scholar 

  • Atwater, B. F., Cisternas, M., Bourgois, J., Dudley, W. C., Hendley, J. W. II., and Stauffer, P. H., 1999. Surviving a Tsunami – Lessons from Chile, Hawaii and Japan. US Geological Survey Circular 1187. This report and any updates to it are available online at: http://pubs.usgs.gov/circ/c1187/

  • Atwater, B. F., Fuentes, Z., Halley, R. B., Ten Brink, U. S., and Tuttle, M. P., 2014. Effects of 2010 Hurricane Earl amidst geologic evidence for greater overwash at Anegada, British Virgin Islands. Advances in Geosciences, 38(38), 21–30.

    Article  Google Scholar 

  • Bahlburg, H., and Spiske, M., 2012. Sedimentology of tsunami inflow and backflow deposits: key differences revealed in a modern example. Sedimentology, 59(3), 1063–1086.

    Article  Google Scholar 

  • Bird, E. C. F., 1985. Coastline Changes. New York: Wiley. 219 pp.

    Google Scholar 

  • Brázdil, R., Kundzewicz, Z. W., and Benito, G., 2006. Historical hydrology for studying flood risk in Europe. Hydrological Sciences Journal, 51(5), 739–764.

    Article  Google Scholar 

  • Bryant, E., 2005. Natural Hazards. Cambridge: Cambridge University Press.

    Google Scholar 

  • ChaguĂ©-Goff, C., Schneider, J. L., Goff, J. R., Dominey-Howes, D., and Strotz, L., 2011. Expanding the proxy toolkit to help identify past events – lessons from the 2004 Indian Ocean Tsunami and the 2009 South Pacific Tsunami. Earth-Science Reviews, 107(1), 107–122.

    Article  Google Scholar 

  • Cox, R., Zentner, D. B., Kirchner, B. J., and Cook, M. S., 2012. Boulder ridges on the Aran Islands (Ireland): recent movements caused by storm waves, not tsunamis. The Journal of Geology, 120(3), 249–272.

    Article  Google Scholar 

  • Dawson, R. J., Dickson, M. E., Nicholls, R. J., Hall, J. W., Walkden, M. J., Stansby, P. K., and Watkinson, A. R., 2009. Integrated analysis of risks of coastal flooding and cliff erosion under scenarios of long term change. Climatic Change, 95(1–2), 249–288.

    Article  Google Scholar 

  • Del RĂ­o, L., and Gracia, F. J., 2009. Erosion risk assessment of active coastal cliffs in temperate environments. Geomorphology, 112(1), 82–95.

    Google Scholar 

  • Dewez, T. J., Rohmer, J., Regard, V., and Cnudde, C., 2013. Probabilistic coastal cliff collapse hazard from repeated terrestrial laser surveys: case study from Mesnil Val (Normandy, northern France). Journal of Coastal Research, 65, 702–707.

    Article  Google Scholar 

  • Duperret, A., Genter, A., Mortimore, R. N., Delacourt, B., and De Pomerai, M. R., 2002. Coastal rock cliff erosion by collapse at Puys, France: the role of impervious marl seams within chalk of NW Europe. Journal of Coastal Research, 18, 52–61.

    Google Scholar 

  • Firth, C. A. L. L. U. M., Stewart, I., McGuire, W. J., Kershaw, S., and Vita-Finzi, C., 1996. Coastal Elevation Changes in Eastern Sicily: Implications for Volcano Instability at Mount Etna. London: Geological Society, Special Publications, Vol. 110, No. 1, pp. 153–167.

    Google Scholar 

  • Galloway, D. L., and Burbey, T. J., 2011. Review: regional land subsidence accompanying groundwater extraction. Hydrogeology Journal, 19(8), 1459–1486.

    Article  Google Scholar 

  • Goff, J., McFadgen, B. G., and ChaguĂ©-Goff, C., 2004. Sedimentary differences between the 2002 Easter storm and the 15th-century Okoropunga tsunami, southeastern North Island, New Zealand. Marine Geology, 204(1), 235–250.

    Article  Google Scholar 

  • Gray, W. M., 1979. Hurricanes: their formation, structure and likely role in the tropical circulation. In Shaw, D. B. (ed.), Meteorology Over the Tropical Oceans. Bracknell, Berks: Royal Meteorological Society, J. Glaisher House, Grenville place, pp. 155–218.

    Google Scholar 

  • GĂĽnther, A., and Thiel, C., 2009. Combined rock slope stability and shallow landslide susceptibility assessment of the Jasmund cliff area (RĂĽgen Island, Germany). Natural Hazards and Earth System Science, 9(3), 687–698.

    Article  Google Scholar 

  • Hoffmann, G., and Lampe, R., 2007. Sediment budget calculation to estimate Holocene coastal changes on the southwest Baltic Sea. Marine Geology, 243(2007), 143–156.

    Article  Google Scholar 

  • Hoffmann, G., and Reicherter, K., 2014. Reconstructing Anthropocene extreme flood events by using litter deposits. Global and Planetary Change, 122, 23–28.

    Article  Google Scholar 

  • ISO/IEC, 2014. Safety Aspects – Guidelines for Their Inclusion in Standards. London: International Organization for Standardization/The International Electrotechnical Commission Guide 51. British Standards Institution. http://shop.bsigroup.com/ProductDetail/?pid=000000000030299269

  • Kortekaas, S., and Dawson, A. G., 2007. Distinguishing tsunami and storm deposits: an example from Martinhal, SW Portugal. Sedimentary Geology, 200(3), 208–221.

    Article  Google Scholar 

  • Koster, B., Hoffmann, G., GrĂĽtzner, C., and Reicherter, K., 2014. Ground penetrating radar facies of inferred tsunami deposits on the shores of the Arabian Sea (northern Indian Ocean). Marine Geology, 351, 13–34, doi:10.1016/j.margeo.2014.03.002.

    Article  Google Scholar 

  • Kremer, K., Simpson, G., and Girardclos, S., 2012. Giant Lake Geneva tsunami in AD 563. Nature Geoscience, 5, 756–757.

    Article  Google Scholar 

  • Kuhn, D., and PrĂĽfer, S., 2014. Coastal cliff monitoring and analysis of mass wasting processes with the application of terrestrial laser scanning: a case study of RĂĽgen, Germany. Geomorphology, 213, 153–165.

    Article  Google Scholar 

  • Lario, J., Luque, L., Zazo, C., Goy, J. L., Spencer, C., Cabero, A., and Alonso-Azcárate, J., 2010. Tsunami vs. storm surge deposits: a review of the sedimentological and geomorphological records of extreme wave events (EWE) during the Holocene in the Gulf of Cadiz, Spain. Zeitschrift fĂĽr Geomorphologie, Supplementary Issues, 54(3), 301–316.

    Article  Google Scholar 

  • Lau, A. Y. A., Switzer, A. D., Dominey-Howes, D., Aitchison, J. C., and Zong, Y., 2010. Written records of historical tsunamis in the northeastern South China Sea: challenges associated with developing a new integrated database. Natural Hazards and Earth System Sciences, 10, 1793.

    Article  Google Scholar 

  • McGranahan, G., Balk, D., and Anderson, B., 2007. The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environment and Urbanization, 19(1), 17–37.

    Article  Google Scholar 

  • Minoura, K., Imamura, F., Sugawara, D., Kono, Y., and Iwashita, T., 2001. The 869 Jogan tsunami deposit and recurrence interval of large-scale tsunami on the Pacific coast of northeast Japan. Journal of Natural Disaster Science, 23(2), 83–88.

    Google Scholar 

  • Monserrat, S., Vilibić, I., and Rabinovich, A. B., 2006. Meteotsunamis: atmospherically induced destructive ocean waves in the tsunami frequency band. Natural Hazards and Earth System Science, 6(6), 1035–1051.

    Article  Google Scholar 

  • Morton, R. A., Gelfenbaum, G., and Jaffe, B. E., 2007. Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples. Sedimentary Geology, 200(3), 184–207.

    Article  Google Scholar 

  • Nanayama, F., Satake, K., Furukawa, R., Shimokawa, K., Atwater, B. F., Shigeno, K., and Yamaki, S., 2003. Unusually large earthquakes inferred from tsunami deposits along the Kuril trench. Nature, 424, 660–663.

    Article  Google Scholar 

  • Nicholls, R. J., 2004. Coastal flooding and wetland loss in the 21st century: changes under the SRES climate and socio-economic scenarios. Global Environmental Change, 14(1), 69–86.

    Article  Google Scholar 

  • Nott, J., 2004. Paleotempestology: the study of prehistoric tropical cyclones – a review and implications for hazard assessment. Environment International, 30(3), 433–447.

    Article  Google Scholar 

  • Plafker, G., 1969. Tectonics of the March 27, 1964, Alaska Earthquake. Washington, DC: US Government Printing Office, p. 74.

    Google Scholar 

  • Rhodes, B., Tuttle, M., Horton, B., Doner, L., Kelsey, H., Nelson, A., and Cisternas, M., 2006. Paleotsunami research. Eos, Transactions American Geophysical Union, 87(21), 205–209.

    Article  Google Scholar 

  • Ross, J. C., 1854. On the effect of the pressure of the atmosphere on the mean level of the ocean. Philosophical Transactions of the Royal Society of London, 144, 285–296.

    Article  Google Scholar 

  • Satake, K., Shimazaki, K., Tsuji, Y., and Ueda, K., 1996. Time and size of a giant earthquake in Cascadia inferred from Japanese tsunami records of January 1700. Nature, 379(6562), 246–249.

    Article  Google Scholar 

  • Scheffers, A., 2008. Tsunami boulder deposits. In Shiki, T., Tsuji, Y., Yamakazi, T., and Minoura, K. (eds.), Tsunamiites – Features and Implications. Amsterdam: Elsevier Scientific, pp. 299–318.

    Chapter  Google Scholar 

  • Scheffers, A., and Scheffers, S., 2006. Documentation of the impact of Hurricane Ivan on the coastline of Bonaire (Netherlands Antilles). Journal of Coastal Research, 22, 1437–1450, doi:10.2112/05-0535.1.

    Article  Google Scholar 

  • Schlacher, T. A., Dugan, J., Schoeman, D. S., Lastra, M., Jones, A., Scapini, F., and Defeo, O., 2007. Sandy beaches at the brink. Diversity and Distributions, 13(5), 556–560.

    Article  Google Scholar 

  • Shanmugam, G., 2012. Process-sedimentological challenges in distinguishing paleo-tsunami deposits. Natural Hazards, 63(1), 5–30.

    Article  Google Scholar 

  • Shiki, T., Tachibana, T., Fujiwara, O., Goto, K., Nanayama, F., and Yamazaki, T., 2008. Characteristic features of tsunamiites. In Shiki, T., Tsuji, Y., Yamakazi, T., and Minoura, K. (eds.), Tsunamiites – Features and Implications. Amsterdam: Elsevier Scientific, pp. 319–336.

    Chapter  Google Scholar 

  • Small, C., and Nicholls, R. J., 2003. A global analysis of human settlement in coastal zones. Journal of Coastal Research, 19, 584–599.

    Google Scholar 

  • Switzer, A. D., and Jones, B. G., 2008. Large-scale washover sedimentation in a freshwater lagoon from the southeast Australian coast: sea-level change, tsunami or exceptionally large storm? The Holocene, 18(5), 787–803.

    Article  Google Scholar 

  • Switzer, A. D., Pucillo, K., Haredy, R. A., Jones, B. G., and Bryant, E. A., 2005. Sea level, storm, or tsunami: enigmatic sand sheet deposits in a sheltered coastal embayment from southeastern New South Wales, Australia. Journal of Coastal Research, 21, 655–663.

    Article  Google Scholar 

  • Switzer, A. D., Yu, F., Gouramanis, C., Soria, J. L. A., and Pham, D. T., 2014. Integrating different records to assess coastal hazards at multi-century timescales. Journal of Coastal Research, SI, 70, 723–728.

    Article  Google Scholar 

  • Taboroši, D., and KázmĂ©r, M., 2013. Erosional and depositional textures and structures in coastal karst landscapes. In Coastal Karst Landforms. Dordrecht: Springer, pp. 15–57.

    Chapter  Google Scholar 

  • Vita-Finzi, C., and Cornelius, P. F. S., 1973. Cliff sapping by molluscs in Oman. Journal of Sedimentary Research, 43, 31–32.

    Google Scholar 

  • Williams, D. M., and Hall, A. M., 2004. Cliff-top megaclast deposits of Ireland, a record of extreme waves in the North Atlantic – storms or tsunamis? Marine Geology, 206(1), 101–117.

    Article  Google Scholar 

  • Wolman, M. G., and Miller, J. P., 1960. Magnitude and frequency of forces in geomorphic processes. The Journal of Geology, 68, 54–74.

    Article  Google Scholar 

  • Wunsch, C., and Stammer, D., 1997. Atmospheric loading and the oceanic “inverted barometer” effect. Reviews of Geophysics, 35(1), 79–107.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gösta Hoffmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Hoffmann, G., Reicherter, K. (2016). Geohazards: Coastal Disasters. In: Harff, J., Meschede, M., Petersen, S., Thiede, J. (eds) Encyclopedia of Marine Geosciences. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6238-1_169

Download citation

Publish with us

Policies and ethics