Skip to main content

Raman Spectroscopy as a Biomarker-Investigative Tool in Bone Metabolism

  • Reference work entry
  • First Online:
Biomarkers in Bone Disease

Abstract

Bone is a living material with a composite structure that endures long and repetitive shocks caused by walking or jumping. Currently, clinical imaging modalities do not completely characterize the quality of bone. Additionally, these approaches are inadequate for detecting the earliest disease stages, for determining the age, or for verifying the treatment impact. Raman spectroscopy is an easy technique that provides a fingerprint of the chemical and structural composition of bone. Thus, it allows the determination of biomarkers for the quantification of bone quality and to qualify the evolution with physiological changes and diseases as in osteoporosis and osteogenesis imperfecta.

Catherine Bosser and Agathe Ogier contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMD:

Bone mineral density

BP:

Bisphosphonate

FWMH:

Full width at maximum height

GAG:

Glycosaminoglycan

IR:

Infrared spectroscopy

MicroCT:

Micro-computed tomography

NIR:

Near infrared

PCA:

Principal component analysis

PG:

Proteoglycan

RS:

Raman spectroscopy

References

  • Akkus O, Adar F, Schaffler MB. Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone. 2004;34:443–53.

    Article  CAS  PubMed  Google Scholar 

  • Awonusi A, Morris MD, Tecklenburg MMJ. Carbonate assignment and calibration in the raman spectrum of apatite. Calcif Tissue Int. 2007;81:46–52.

    Article  CAS  PubMed  Google Scholar 

  • Bailey AJ, Paul RG, Knott L. Mechanisms of maturation and ageing of collagen. Mech Ageing Dev. 1998;106:1–56.

    Article  CAS  PubMed  Google Scholar 

  • Bansil R, Yannas IV, Stanley HE. Raman spectroscopy: a structural probe of glycosaminoglycans. Biochim Biophys Acta. 1978;541:535–42.

    Article  CAS  PubMed  Google Scholar 

  • Bart ZR, Hammond MA, Wallace JM. Multi-scale analysis of bone chemistry, morphology and mechanics in the oim model of osteogenesis imperfecta. Connect Tissue Res. 2014;55:4–8.

    Article  CAS  PubMed  Google Scholar 

  • Bazin D, Chappard C, Combes C, Carpentier X, Rouzière S, André G, Matzen G, Allix M, Thiaudière D, Reguer S, et al. Diffraction techniques and vibrational spectroscopy opportunities to characterise bones. Osteoporos Int. 2009;20:1065–75.

    Article  CAS  PubMed  Google Scholar 

  • Bi X, Patil CA, Lynch CC, Pharr GM, Mahadevan-Jansen A, Nyman JS. Raman and mechanical properties correlate at whole bone- and tissue-levels in a genetic mouse model. J Biomech. 2011;44:297–303.

    Article  PubMed  Google Scholar 

  • Buchwald T, Kozielski M, Szybowicz M. Determination of collagen fibers arrangement in bone tissue by using transformations of Raman spectra maps. J Spectrosc. 2012a;27:107–17.

    Article  CAS  Google Scholar 

  • Buchwald T, Niciejewski K, Kozielski M, Szybowicz M, Siatkowski M, Krauss H. Identifying compositional and structural changes in spongy and subchondral bone from the hip joints of patients with osteoarthritis using Raman spectroscopy. J Biomed Opt. 2012b;17:017007.

    Article  PubMed  Google Scholar 

  • Buckley K, Kerns JG, Birch HL, Gikas PD, Parker AW, Matousek P, Goodship AE. Functional adaptation of long bone extremities involves the localized “tuning” of the cortical bone composition; evidence from Raman spectroscopy. J Biomed Opt. 2014;19:111602.

    Article  PubMed  Google Scholar 

  • Burket J, Gourion-Arsiquaud S, Havill LM, Baker SP, Boskey AL, van der Meulen MCH. Microstructure and nanomechanical properties in osteons relate to tissue and animal age. J Biomech. 2011;44:277–84.

    Article  PubMed  Google Scholar 

  • Burket JC, Brooks DJ, MacLeay JM, Baker SP, Boskey AL, van der Meulen MCH. Variations in nanomechanical properties and tissue composition within trabeculae from an ovine model of osteoporosis and treatment. Bone. 2013;52:326–36.

    Article  CAS  PubMed  Google Scholar 

  • Carden A, Rajachar RM, Morris MD, Kohn DH. Ultrastructural changes accompanying the mechanical deformation of bone tissue: a Raman imaging study. Calcif Tissue Int. 2003;72:166–75.

    Article  CAS  PubMed  Google Scholar 

  • Carretta R, Luisier B, Bernoulli D, Stussi E, Muller R, Lorenzetti S. Novel method to analyze post-yield mechanical properties at trabecular bone tissue level. J Mech Behav Biomed Mater 2013a; 20:6–18.

    Google Scholar 

  • Carretta R, Stussi E, Muller R, Lorenzetti S. Within subject heterogeneity in tissue-level post-yield mechanical and material properties in human trabecular bone. J Mech Behav Biomed Mater. 2013b;24:64–73.

    Article  PubMed  Google Scholar 

  • Carretta R, Stussi E, Muller R, Lorenzetti S. Prediction of local ultimate strain and toughness of trabecular bone tissue by Raman material composition analysis. BioMed Res Int. 2015;2015:e457371.

    Article  Google Scholar 

  • Clasen ABS, Ruyter IE. Quantitative determination of type A and type B carbonate in human deciduous and permanent enamel by means of fourier transform infrared spectrometry. Adv Dent Res. 1997;11:523–7.

    Article  Google Scholar 

  • Donnelly E, Boskey AL, Baker SP, van der Meulen MCH. Effects of tissue age on bone tissue material composition and nanomechanical properties in the rat cortex. J Biomed Mater Res A. 2009;92A:1048–56.

    Google Scholar 

  • Dooley KA, McCormack J, Fyhrie DP, Morris MD. Stress mapping of undamaged, strained, and failed regions of bone using Raman spectroscopy. J Biomed Opt. 2009;14:044018.

    Article  PubMed  PubMed Central  Google Scholar 

  • Draper ER, Morris MD, Camacho NP, Matousek P, Towrie M, Parker AW, Goodship AE. Novel assessment of bone using time-resolved transcutaneous Raman spectroscopy. J Bone Miner Res. 2005;20:1968–72.

    Article  CAS  PubMed  Google Scholar 

  • Esmonde-White KA, Esmonde-White FWL, Morris MD, Roessler BJ. Fiber-optic Raman spectroscopy of joint tissues. Analyst. 2011;136:1675–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman JJ, Wopenka B, Silva MJ, Pasteris JD. Raman spectroscopic detection of changes in bioapatite in mouse femora as a function of age and in vitro fluoride treatment. Calcif Tissue Int. 2001;68:156–62.

    Article  CAS  PubMed  Google Scholar 

  • Gallant MA, Brown DM, Organ JM, Allen MR, Burr DB. Reference-point indentation correlates with bone toughness assessed using whole-bone traditional mechanical testing. Bone. 2013;53:301–5.

    Article  PubMed  Google Scholar 

  • Gamsjaeger S, Masic A, Roschger P, Kazanci M, Dunlop JWC, Klaushofer K, Paschalis EP, Fratzl P. Cortical bone composition and orientation as a function of animal and tissue age in mice by Raman spectroscopy. Bone. 2010;47:392–9.

    Article  PubMed  Google Scholar 

  • Gamsjaeger S, Hofstetter B, Fratzl-Zelman N, Roschger P, Roschger A, Fratzl P, Brozek W, Masic A, Misof BM, Glorieux FH, et al. Pediatric reference Raman data for material characteristics of iliac trabecular bone. Bone. 2014a;69:89–97.

    Article  CAS  PubMed  Google Scholar 

  • Gamsjaeger S, Klaushofer K, Paschalis EP. Raman analysis of proteoglycans simultaneously in bone and cartilage. J Raman Spectrosc. 2014b;45:794–800.

    Article  CAS  Google Scholar 

  • Gamulin O, Serec K, Bilić V, Balarin M, Kosović M, Drmić D, Brčić L, Seiwerth S, Sikirić P. Monitoring the healing process of rat bones using Raman spectroscopy. J Mol Struct. 2013;1044:308–13.

    Article  CAS  Google Scholar 

  • Gentleman E, Swain RJ, Evans ND, Boonrungsiman S, Jell G, Ball MD, Shean TAV, Oyen ML, Porter A, Stevens MM. Comparative materials differences revealed in engineered bone as a function of cell-specific differentiation. Nat Mater. 2009;8:763–70.

    Article  CAS  PubMed  Google Scholar 

  • Golcuk K, Mandair GS, Callender AF, Sahar N, Kohn DH, Morris MD. Is photobleaching necessary for Raman imaging of bone tissue using a green laser? Biochim Biophys Acta BBA Biomembr. 2006;1758:868–73.

    Article  CAS  Google Scholar 

  • Gong B, Mandair GS, Wehrli FW, Morris MD. Novel assessment tools for osteoporosis diagnosis and treatment. Curr Osteoporos Rep. 2014;12:357–65.

    Article  PubMed  Google Scholar 

  • Goodyear SR, Gibson IR, Skakle JMS, Wells RPK, Aspden RM. A comparison of cortical and trabecular bone from C57 Black 6 mice using Raman spectroscopy. Bone. 2009;44:899–907.

    Article  PubMed  Google Scholar 

  • Gupta HS, Seto J, Wagermaier W, Zaslansky P, Boesecke P, Fratzl P. Cooperative deformation of mineral and collagen in bone at the nanoscale. Proc Natl Acad Sci. 2006;103:17741–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammond MA, Gallant MA, Burr DB, Wallace JM. Nanoscale changes in collagen are reflected in physical and mechanical properties of bone at the microscale in diabetic rats. Bone. 2014;60:26–32.

    Article  CAS  PubMed  Google Scholar 

  • Hernandez CJ, Keaveny T. A biomechanical perspective on bone quality. Bone. 2006;39:1173–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imbert L, Auregan JC, Pernelle K, Hoc T. Mechanical and mineral properties of osteogenesis imperfecta human bones at the tissue level. Bone. 2014;65:18–24.

    Article  CAS  PubMed  Google Scholar 

  • Kavukcuoglu NB, Arteaga-Solis E, Lee-Arteaga S, Ramirez F, Mann AB. Nanomechanics and Raman spectroscopy of fibrillin 2 knock-out mouse bones. J Mater Sci. 2007;42:8788–94.

    Article  CAS  Google Scholar 

  • Kavukcuoglu NB, Patterson-Buckendahl P, Mann AB. Effect of osteocalcin deficiency on the nanomechanics and chemistry of mouse bones. J Mech Behav Biomed Mater. 2009;2:348–54.

    Article  CAS  PubMed  Google Scholar 

  • Kazanci M, Roschger P, Paschalis EP, Klaushofer K, Fratzl P. Bone osteonal tissues by Raman spectral mapping: orientation–composition. J Struct Biol. 2006;156:489–96.

    Article  CAS  PubMed  Google Scholar 

  • Kazanci M, Wagner HD, Manjubala NI, Gupta HS, Paschalis E, Roschger P, Fratzl P. Raman imaging of two orthogonal planes within cortical bone. Bone. 2007;41:456–61.

    Article  CAS  PubMed  Google Scholar 

  • Kerns JG, Gikas PD, Buckley K, Shepperd A, Birch HL, McCarthy I, Miles J, Briggs TWR, Keen R, Parker AW, et al. Evidence from Raman spectroscopy of a putative link between inherent bone matrix chemistry and degenerative joint disease. Arthritis Rheum. 2014;66:1237–46.

    Article  Google Scholar 

  • Kim G, Boskey AL, Baker SP, van der Meulen MCH. Improved prediction of rat cortical bone mechanical behavior using composite beam theory to integrate tissue level properties. J Biomech. 2012;45:2784–90.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim G, Cole JH, Boskey AL, Baker SP, van der Meulen MC. Reduced tissue-level stiffness and mineralization in osteoporotic cancellous bone. Calcif Tissue Int. 2014;95:125–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knott L, Bailey AJ. Collagen cross-links in mineralizing tissues: a review of their chemistry, function, and clinical relevance. Bone. 1998;22:181–7.

    Article  CAS  PubMed  Google Scholar 

  • Kohn DH, Sahar ND, Wallace JM, Golcuk K, Morris MD. Exercise alters mineral and matrix composition in the absence of adding new bone. Cells Tissues Organs. 2008;189:33–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kozielski M, Buchwald T, Szybowicz M, Błaszczak Z, Piotrowski A, Ciesielczyk B. Determination of composition and structure of spongy bone tissue in human head of femur by Raman spectral mapping. J Mater Sci Mater Med. 2011;22:1653–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lieber CA, Mahadevan-Jansen A. Automated method for subtraction of fluorescence from biological Raman spectra. Appl Spectrosc. 2003;57:1363–7.

    Article  CAS  PubMed  Google Scholar 

  • Mandair GS, Morris MD. Contributions of Raman spectroscopy to the understanding of bone strength. BoneKEy Rep. 2015;4:620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCreadie BR, Morris MD, Chen T, Sudhaker Rao D, Finney WF, Widjaja E, Goldstein SA. Bone tissue compositional differences in women with and without osteoporotic fracture. Bone. 2006;39:1190–5.

    Article  CAS  PubMed  Google Scholar 

  • Meganck JA, Begun DL, McElderry JD, Swick A, Kozloff KM, Goldstein SA, Morris MD, Marini JC, Caird MS. Fracture healing with alendronate treatment in the Brtl/+ mouse model of osteogenesis imperfecta. Bone. 2013;56:204–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris MD, Mandair GS. Raman assessment of bone quality. Clin Orthop Relat Res. 2011;469:2160–9.

    Article  PubMed  Google Scholar 

  • Nalla RK, Kruzic JJ, Kinney JH, Balooch M, Ager III JW, Ritchie RO. Role of microstructure in the aging-related deterioration of the toughness of human cortical bone. Mater Sci Eng C. 2006;26:1251–60.

    Article  CAS  Google Scholar 

  • Newman CL, Moe SM, Chen NX, Hammond MA, Wallace JM, Nyman JS, Allen MR. Cortical bone mechanical properties are altered in an animal model of progressive chronic kidney disease. PLoS One. 2014;9:e99262.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nyman JS, Makowski AJ, Patil CA, Masui TP, O’Quinn EC, Bi X, Guelcher SA, Nicollela DP, Mahadevan-Jansen A. Measuring differences in compositional properties of bone tissue by confocal Raman spectroscopy. Calcif Tissue Int. 2011;89:111–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ojanen X, Isaksson H, Töyräs J, Turunen MJ, Malo MKH, Halvari A, Jurvelin JS. Relationships between tissue composition and viscoelastic properties in human trabecular bone. J Biomech. 2015;48:269–75.

    Article  CAS  PubMed  Google Scholar 

  • Orkoula MG, Vardaki MZ, Kontoyannis CG. Study of bone matrix changes induced by osteoporosis in rat tibia using Raman spectroscopy. Vib Spectrosc. 2012;63:404–8.

    Article  CAS  Google Scholar 

  • Penel G, Delfosse C, Descamps M, Leroy G. Composition of bone and apatitic biomaterials as revealed by intravital Raman microspectroscopy. Bone. 2005;36:893–901.

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro ALB, Soares LGP, Marques AMC, Aciole JMS, de Souza RA, Silveira L. Raman ratios on the repair of grafted surgical bone defects irradiated or not with laser (λ780 nm) or LED (λ850 nm). J Photochem Photobiol B. 2014;138:146–54.

    Article  CAS  PubMed  Google Scholar 

  • Ramasamy JG, Akkus O. Local variations in the micromechanical properties of mouse femur: the involvement of collagen fiber orientation and mineralization. J Biomech. 2007;40:910–8.

    Article  CAS  PubMed  Google Scholar 

  • Rho J-Y, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierachical structure of bone. Med Eng Phys. 1998;20:92–102.

    Article  CAS  PubMed  Google Scholar 

  • Roschger A, Gamsjaeger S, Hofstetter B, Masic A, Blouin S, Messmer P, Berzlanovich A, Paschalis EP, Roschger P, Klaushofer K, et al. Relationship between the v2PO4/amide III ratio assessed by Raman spectroscopy and the calcium content measured by quantitative backscattered electron microscopy in healthy human osteonal bone. J Biomed Opt. 2014;19:065002.

    Article  PubMed  Google Scholar 

  • Shen J, Fan L, Yang J, Shen AG, Hu JM. A longitudinal Raman microspectroscopic study of osteoporosis induced by spinal cord injury. Osteoporos Int. 2010;21:81–7.

    Article  CAS  PubMed  Google Scholar 

  • Silva MJ, Brodt MD, Wopenka B, Thomopoulos S, Williams D, Wassen MH, Ko M, Kusano N, Bank RA. Decreased collagen organization and content are associated with reduced strength of demineralized and intact bone in the SAMP6 mouse. J Bone Miner Res. 2006;21:78–88.

    Article  PubMed  Google Scholar 

  • Tarnowski CP, Ignelzi MA, Morris MD. Mineralization of developing mouse calvaria as revealed by Raman microspectroscopy. J Bone Miner Res. 2002;17:1118–26.

    Article  PubMed  Google Scholar 

  • Timlin JA, Carden A, Morris MD. Chemical microstructure of cortical bone probed by Raman transects. Appl Spectrosc. 1999;53:1429–35.

    Article  CAS  Google Scholar 

  • Timlin JA, Carden A, Morris MD, Rajachar RM, Kohn DH. Raman spectroscopic imaging markers for fatigue-related microdamage in bovine bone. Anal Chem. 2000;72:2229–36.

    Article  CAS  PubMed  Google Scholar 

  • Turunen MJ, Saarakkala S, Rieppo L, Helminen HJ, Jurvelin JS, Isaksson H. Comparison between infrared and Raman spectroscopic analysis of maturing rabbit cortical bone. Appl Spectrosc. 2011;65:595–603.

    Article  CAS  PubMed  Google Scholar 

  • Wallace JM, Golcuk K, Morris MD, Kohn DH. Inbred strain-specific effects of exercise in wild type and biglycan deficient mice. Ann Biomed Eng. 2009;38:1607–17.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang C, Wang Y, Huffman NT, Cui C, Yao X, Midura S, Midura RJ, Gorski JP. Confocal laser Raman microspectroscopy of biomineralization foci in UMR 106 osteoblastic cultures reveals temporally synchronized protein changes preceding and accompanying mineral crystal deposition. J Biol Chem. 2009;284:7100–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto T, Uchida K, Naruse K, Suto M, Urabe K, Uchiyama K, Suto K, Moriya M, Itoman M, Takaso M. Quality assessment for processed and sterilized bone using Raman spectroscopy. Cell Tissue Bank. 2012;13:409–14.

    Article  PubMed  Google Scholar 

  • Yao X, Carleton SM, Kettle AD, Melander J, Phillips CL, Wang Y. Gender-dependence of bone structure and properties in adult osteogenesis imperfecta murine model. Ann Biomed Eng. 2013;41:1139–49.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yavorskyy A, Hernandez-Santana A, McCarthy G, McMahon G. Detection of calcium phosphate crystals in the joint fluid of patients with osteoarthritis – analytical approaches and challenges. Analyst. 2008;133:302–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeni YN, Yerramshetty J, Akkus O, Pechey C, Les CM. Effect of fixation and embedding on Raman spectroscopic analysis of bone tissue. Calcif Tissue Int. 2006;78:363–71.

    Article  CAS  PubMed  Google Scholar 

  • Yerramshetty JS, Akkus O. The associations between mineral crystallinity and the mechanical properties of human cortical bone. Bone. 2008;42:476–82.

    Article  CAS  PubMed  Google Scholar 

  • Yerramshetty JS, Lind C, Akkus O. The compositional and physicochemical homogeneity of male femoral cortex increases after the sixth decade. Bone. 2006;39:1236–43.

    Article  CAS  PubMed  Google Scholar 

  • Yerramshetty J, Kim D-G, Yeni YN. Increased microstructural variability is associated with decreased structural strength but with increased measures of structural ductility in human vertebrae. J Biomech Eng. 2009;131:094501.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Lui H, McLean DI, Zeng H. Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy. Appl Spectrosc. 2007;61:1225–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Catherine Bosser or Agathe Ogier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Bosser, C., Ogier, A., Imbert, L., Hoc, T. (2017). Raman Spectroscopy as a Biomarker-Investigative Tool in Bone Metabolism. In: Patel, V., Preedy, V. (eds) Biomarkers in Bone Disease. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7693-7_31

Download citation

Publish with us

Policies and ethics