Skip to main content

Renal Biomarkers N-Acetyl-Beta-d-Glucosaminidase (NAG), Endothelin, and Their Application

  • Living reference work entry
  • First Online:
Biomarkers in Kidney Disease
  • 305 Accesses

Abstract

The risk of acute kidney injury is rising due to aging in the world and with the increased usage of therapeutic agents and diagnostic interventions which are highly nephrotoxic. Kidneys, however, well tolerate with the injury, and with the late rise in nitrogenous waste products such as creatinine and BUN in the blood, the organ damage is underestimated. Biomarkers are being searched to find a more specific and sensitive one for kidney injury diagnosis like cardiac troponins (I and T) which is the gold standard in diagnosing acute coronary syndrome nowadays replaced the total creatine kinase and CK-MB. However, there is still no such a marker available to take place instead of creatinine. N-Acetyl-β-d-glucosaminidase is a lysosomal enzyme that leaks into urine which is mainly originated from the proximal tubular cells. This enzyme is defined as being more specific and sensitive to renal tubular injury than creatinine especially with its isoenzymes and when combined with other renal biomarkers, for example, NGAL and Kim-1. N-Acetyl-β-d-glucosaminidase is stable in urine, and the variation among individuals is minimal that the spot urine sample is adequate for the assay practically with colorimetric and spectrophotometric methods with its high reproducibility. Endothelins are paracrine hormones that stimulate myocardial contraction and other smooth muscle contraction such as uterus, bronchus, and stomach. They also promote vascular smooth muscle cell growth. Besides they stimulate secretion in kidney, liver, and adrenals. Endothelins are implicated in many pathophysiological conditions such as hypertension, myocardial infarctus, subarachnoidal hemorrhage, and kidney failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

aa:

Amino acid

AKI:

Acute kidney injury

ANP:

Atrial natriuretic peptide

BNP:

Brain natriuretic peptide

cGMP:

Cyclic guanosine monophosphate

CKD:

Chronic kidney disease

Cys C:

Cystatin C

ECE:

Endothelin-converting enzyme

ET:

Endothelin

ETA:

Endothelin receptor type A

ETB:

Endothelin receptor type B

GFR:

Glomerular filtration ratio

IL-1:

Interleukin-1

IL-6:

Interleukin-6

IP3:

Inositol trisphosphate

LDL:

Low-density lipoprotein

NAG:

N-acetyl-β-d-glucosaminidase

NEP:

Neutral endopeptidase

NGAL:

Neutrophil gelatinase-associated lipocalin

NO:

Nitric oxide

PKC:

Protein kinase C

RBP:

Retinol binding protein

SCr:

Serum creatinine

SRTX:

Sarafotoxin

TGF-B:

Transforming growth factor beta

References

  • Abassi ZA, Tate JE, Golomb E, et al. Role of neutral endopeptidase in the metabolism of endothelin. Hypertension. 1992;20(1):89–95.

    Article  CAS  PubMed  Google Scholar 

  • Arai H, Hori S, Aramori I, et al. Cloning and expression of a cDNA encoding an endothelin receptor. Nature. 1990;348:730–2.

    Article  CAS  PubMed  Google Scholar 

  • Arinami T, Ishikawa M, Inoue A, et al. Chromosomal assignments of the human endothelin family genes: the endothelin-1 gene (EDN1) to 6p23–p24, the endothelin-2 gene (EDN2) to 1p34, and the endothelin-3 gene (EDN3) to 20q13.2–q13.3. Am J Hum Genet. 1991;48(5):990–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Assal HS, Tawfeek S, Rasheed EA, et al. Serum cystatin C and tubular urinary enzymes as biomarkers of renal dysfunction in type 2 diabetes mellitus. Clin Med Insights Endocrinol Diabetes. 2013;6:7–13.

    PubMed Central  PubMed  Google Scholar 

  • Attina T, Camidge R, Newby DE, et al. Endothelin antagonism in pulmonary hypertension, heart failure, and beyond. Heart. 2005;91(6):825–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bagnato A, Loizidou M, Pflug BR, et al. Role of the endothelin axis and its antagonists in the treatment of cancer. Br J Pharmacol. 2011;163(2):220–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bagshaw SM. Subclinical acute kidney injury : a novel biomarker-defined syndrome. Crit Care. 2011;13(3):201–3.

    Google Scholar 

  • Bazzi C, Petrini C, Rizza V, et al. Urinary N-acetyl-β-glucosaminidase excretion is a marker of tubular cell dysfunction and a predictor of outcome in primary glomerulonephritis. Nephrol Dial Transplant. 2002;7:1890–6.

    Article  Google Scholar 

  • Bloch KD, Eddy RL, Shows TB, et al. cDNA cloning and chromosomal assignment of the gene encoding endothelin 3. J Biol Chem. 1989;264:18156–61.

    CAS  PubMed  Google Scholar 

  • Bondiou MT, Bourbouze R, Bernard M, et al. Inhibition of A and B N-acetyl-beta-d-glucosaminidase urinary isoenzymes by urea. Clin Chim Acta. 1985;149(1):67–73.

    Article  CAS  PubMed  Google Scholar 

  • Bosomworth MP, Aparicio SR, Hay AWM. Nephrology dialysis transplantation urine N-acetyl-β-d-glucosaminidase – a marker of tubular damage? Nephrol Dial Transplant. 1999;14:620–6.

    Article  CAS  PubMed  Google Scholar 

  • Bremnes T, Paasche JD, Mehlum A, et al. Regulation and intracellular trafficking pathways of the endothelin receptors. J Biol Chem. 2000;275:17596–604.

    Article  CAS  PubMed  Google Scholar 

  • Câmara NO, Williams Jr WW, Pacheco-Silva A. Proximal tubular dysfunction as an indicator of chronic graft dysfunction. Braz J Med Biol Res. 2009;42(3):229–36.

    Article  PubMed  Google Scholar 

  • Capodicasa E, Angelini A, Tassi C. Isoenzyme A and urinary N-acetyl-β-d-glucosaminidase activity in normal pregnancy. Ren Fail. 2011;33(6):650–3.

    Article  CAS  PubMed  Google Scholar 

  • Cardillo C, Kilcoyne CM, Waclawiw M, et al. Role of endothelin in the increased vascular tone of patients with essential hypertension. Hypertension. 1999;33(2):753–8.

    Article  CAS  PubMed  Google Scholar 

  • Chester AH, Yacoub MH. The role of endothelin-1 in pulmonary arterial hypertension. Glob Cardiol Sci Pract. 2014;2014(2):62–78.

    PubMed Central  PubMed  Google Scholar 

  • Chichorro JG, Fiuza CR, Bressan E, et al. Endothelins as pronociceptive mediators of the rat trigeminal system: role of ETA and ETB receptors. Brain Res. 2010;1345:73–83.

    Article  CAS  PubMed  Google Scholar 

  • Coma P, Gomez-Chacon L, Garcia-Serrano B, et al. α-Glucosidase and N-acetyl-beta-d-glucosaminidase isoenzymes in serum. Clin Chem. 1992;38(2):223–6.

    CAS  PubMed  Google Scholar 

  • D’Orléans-Juste P, Plante M, Honoré JC, et al. Synthesis and degradation of endothelin-1. Can J Physiol Pharmacol. 2003;81:503–10.

    Article  PubMed  Google Scholar 

  • Dalva K, Balk M, Saydam GS, et al. İdrar N-Asetil-Beta-d-Glukosaminidaz aktivitesi : iki farklı tayin yönteminin karşılaştırılması. J Ank Uni. 2011;64(1):001–005.

    Google Scholar 

  • Damman K, Masson S, Hillege HL, et al. Clinical outcome of renal tubular damage in chronic heart failure. Eur Heart J. 2011;32(21):2705–12.

    Article  CAS  PubMed  Google Scholar 

  • Davenport AP. International union of pharmacology. XXIX. Update on endothelin receptor nomenclature. Pharmacol Rev. 2002;54:219–26.

    Article  CAS  PubMed  Google Scholar 

  • Davenport AP, Maguire JJ. Is endothelin-induced vasoconstriction mediated only by ETA receptors in humans? Trends Pharmacol Sci. 1994;15:9–11.

    Article  CAS  PubMed  Google Scholar 

  • De Geus HRH, Betjes MGH, et al. Biomarkers for the prediction of acute kidney injury: a narrative review on current status and future challenges. Clin Kidney J. 2012;5:102–8.

    Article  PubMed Central  PubMed  Google Scholar 

  • de Nucci G, Thomas R, D’Orleans-Juste P, et al. Pressor effects of circulating endothelin are limited by its removal in the pulmonary circulation and by the release of prostacyclin and endothelium-derived relaxing factor. Proc Natl Acad Sci U S A. 1988;85(24):9797–800.

    Article  PubMed Central  PubMed  Google Scholar 

  • Delanghe J, Speeckaert M. Preanalytical requirements of urinalysis. Biochem Med. 2014;24(1):89–104.

    Article  CAS  Google Scholar 

  • Denault JB, Claing A, D’Orleans-Juste P, et al. Processing of proendothelin-1 by human furin convertase. FEBS Lett. 1995;362(3):276–80.

    Article  CAS  PubMed  Google Scholar 

  • Dhaun N, Goddard J, Webb DJ. The endothelin system and its antagonism in chronic kidney disease. J Am Soc Nephrol. 2006;17:943–55.

    Article  CAS  PubMed  Google Scholar 

  • Dhaun N, Lilithkarntakul P, Maclntyre IM, et al. Urinary endothelin-1 in chronic kidney disease and as a marker of disease activity in lupus nephritis. Am J Physiol Ren Physiol. 2009;296(6):F1477–83.

    Article  CAS  Google Scholar 

  • Dhaun N, MacIntyre IM, Kerr D, Melville V, Johnston NR, Haughie S, et al. Selective endothelin-A receptor antagonism reduces proteinuria, blood pressure, and arterial stiffness in chronic proteinuric kidney disease. Hypertension. 2011;57:772–779.

    Google Scholar 

  • Dupuis J, Stewart DJ, Cernacek P, et al. Human pulmonary circulation is an important site for both clearance and production of endothelin-1. Circulation. 1996;94:1278–84.

    Article  Google Scholar 

  • Eid H, de Bold ML, Chen JH, et al. Epicardial mesothelial cells synthesize and release endothelin. J Cardiovasc Pharmacol. 1994;24:715–20.

    Article  CAS  PubMed  Google Scholar 

  • Emoto N, Yanagisawa M. Endothelin-converting enzyme-2 is a membrane-bound, phosphoramidon-sensitive metallo-protease with acidic pH optimum. J Biol Chem. 1995;270:15262–8.

    Article  CAS  PubMed  Google Scholar 

  • Ferguson M, Waikar SS. Established and emerging markers of kidney function. Clin Chem. 2012;58(4):680–9.

    Article  CAS  PubMed  Google Scholar 

  • Findlay J, Levvy GA. Purification of β-N-acetylglucosaminidase from the pig epididymis. Biochem J. 1960;77(1):170–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gasic S, Wagner OF, Vierhapper H, et al. Regional haemodynamic effects and clearance of endothelin-1 in humans: renal and peripheral tissues may contribute to overall disposal of the peptide. J Cardiovasc Pharmacol. 1992;19:176–80.

    Article  CAS  PubMed  Google Scholar 

  • Gibey R, Dupond JL, Henry JC. Urinary N-acetyl-β-d-glucosaminidase (NAG) isozyme profiles: a tool for evaluating nephrotoxicity of aminoglycosides and cephalosporins. Clin Chim Acta. 1984;137:1–11.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez F, Vincent F. Biomarkers for acute kidney injury in critically ill patients. Minerva Anestesiol. 2012;78(12):1394–403.

    CAS  PubMed  Google Scholar 

  • Gray GA, Webb DJ. The endothelin system and its potential as a therapeutic target in cardiovascular disease. Pharmacol Ther. 1996;72(2):109–48.

    Article  CAS  PubMed  Google Scholar 

  • Gupta RK, Bang TJ. Prevention of Contrast-Induced Nephropathy (CIN) in Interventional Radiology Practice. Seminars in Interventional Radiology. 2010;27(4):348–359.

    Google Scholar 

  • Han WK, Waikar SS, Johnson A, et al. Urinary biomarkers in the early diagnosis of acute kidney injury. Kidney Int. 2008;73(7):863–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Han WK, Wagener G, Zhu Y, et al. Urinary biomarkers in the early detection of acute kidney injury after cardiac surgery. Clin J Am Soc Nephrol. 2009;4(5):873–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haynes WG, Webb DJ. Contribution of endogenous generation of endothelin-1 to basal vascular tone. Lancet. 1994;344:852–4.

    Article  CAS  PubMed  Google Scholar 

  • Haynes WG, Webb DJ. Endothelin as a regulator of cardiovascular function in health and disease. J Hypertens. 1998;16(8):1081–98.

    Article  CAS  PubMed  Google Scholar 

  • Haynes WG, Strachan FE, Webb DJ. Endothelin ETA and ETB receptors cause vasoconstriction of human resistance and capacitance vessels in vivo. Circulation. 1995;92:357–63.

    Article  CAS  PubMed  Google Scholar 

  • Hibi Y, Uemura O, Nagai T, et al. The ratios of urinary β2-microglobulin and NAG to creatinine vary with age in children. Pediatr Int. 2014;20. doi:10.1111/ped.12470. [Epub ahead of print].

    Google Scholar 

  • Hiruma T, Asada T, Yamamoto M, et al. Mortality prediction by acute kidney injury biomarkers in comparison with serum creatinine. Biomarkers. 2014;19(8):646–51.

    Article  CAS  PubMed  Google Scholar 

  • Hong JD, Lim IS. Correlation between glomerular filtration rate and urinary N-acetyl-beta-d-glucosaminidase in children with persistent proteinuria in chronic glomerular disease. Korean J Pediatr. 2012;55(4):136–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Horak E, Hopfer SM, Sunderman FW. Spectrophotometric assay for urinary N-acetyl-beta-d-glucosaminidase activity. Clin Chem. 1981;27(7):1180–5.

    CAS  PubMed  Google Scholar 

  • Ikonne JU, Ellis RB. N-Acetyl-β-d-hexosaminidase component A. Different forms in human tissues and fluids. Biochem J. 1973;135(3):457–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Inoue A, Yanagisawa M, Kimura S, et al. The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc Natl Acad Sci U S A. 1989a;86(8):2863–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Inoue A, Yanagisawa M, Takuwa Y, et al. The human preproendothelin-1 gene. Complete nucleotide sequence and regulation of expression. J Biol Chem. 1989b;264(25):14954–9.

    CAS  PubMed  Google Scholar 

  • Inoue T, Matsunaga R, Morooka S, et al. Serum N-acetyl-β-d-gulucosaminidase activity increases in association with insulin resistance in patients with coronary artery disease. Atherosclerosis. 2000;149(1):117–22.

    Article  CAS  PubMed  Google Scholar 

  • Iqbal MP, Kazmi KA, Jafri HR, et al. N-acetyl-beta-d-glucosaminidase in acute myocardial infarction. Exp Mol Med. 2003;35(4):275–8.

    Article  CAS  PubMed  Google Scholar 

  • Iqbal MP, Kazmi K, Mehboobali N, et al. N-acetyl-beta-d-glucosaminidase-a marker of reperfusion and a prognostic indicator in patients with acute myocardial infarction. Acta Cardiol. 2005;60(5):509–13.

    Article  PubMed  Google Scholar 

  • Itoh Y, Yanagisawa M, Ohkubo S, et al. Cloning and sequence analysis of cDNA encoding the precursor of a human endothelium-derived vasoconstrictor peptide, endothelin: identity of human and porcine endothelin. FEBS Lett. 1988;231(2):440–4.

    Article  CAS  PubMed  Google Scholar 

  • Itoh Y, Kimura C, Onda H, et al. Canine endothelin-2: cDNA sequence for the mature peptide. Nucleic Acids Res. 1989;17(13):5389.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Itoh Y, Numata Y, Morita A, et al. Varied value of urinary N-acetyl-beta-d-glucosaminidase isoenzyme B in males of reproductive age. Kidney Int Suppl. 1994;47:38–42.

    Google Scholar 

  • Javed MH, Hussain AN. Estimation and separation of N-acetyl-B-d-glucosaminidase isoenzymes in urine. JPMA. 1992;42:64.

    CAS  Google Scholar 

  • Jiang C, Qi K, Sun K, et al. Diagnostic value of N-acetyl-β-d-glucosaminidase for the early prediction of acute kidney injury after percutaneous nephrolithotripsy. Exp Ther Med. 2013;5(1):197–200.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Karet FE, Davenport AP. Localization of endothelin peptides in human kidney. Kidney Int. 1996;49:382–7.

    Article  CAS  PubMed  Google Scholar 

  • Khimji AK, Rockey DC. Endothelin-biology and disease. Cell Signal. 2010;22(11):1615–25.

    Article  CAS  PubMed  Google Scholar 

  • Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;2:1–138.

    Article  Google Scholar 

  • Kohan DE. Endothelins in the normal and diseased kidney. Am J Kidney Dis. 1997;29:2–26.

    Article  CAS  PubMed  Google Scholar 

  • Kohan DE, Rossi NF, Inscho EW, et al. Regulation of blood pressure and salt homeostasis by endothelin. Physiol Rev. 2011;91(1):1–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Komatsumoto S, Nara M. Changes in the level of endothelin-1 with aging. Nihon Ronen Igakkai Zasshi. 1995;32:664–9.

    Article  CAS  PubMed  Google Scholar 

  • Komuro I, Kurihara H, Sugiyama T, et al. Endothelin stimulates c-fos and c-myc expression and proliferation of vascular smooth muscle cells [published erratum appears in FEBS Lett. 1989;244:509]. FEBS Lett. 1988;238:249–52.

    Article  CAS  PubMed  Google Scholar 

  • Kowalczyk A, Kleniewska P, Kolodziejczyk M et al. The role of endothelin-1 and endothelin receptor antagonists in inflammatory response and sepsis. Arch Immunol Ther Exp (Warsz). 2015;63:41–52.

    Google Scholar 

  • Koyama H, Tabata T, Nishzawa Y, et al. Plasma endothelin levels in patients with uremia. Lancet. 1989;333:991–2.

    Article  Google Scholar 

  • Kwiatkowska E, Domański L, Bober J, et al. N-acetyl-beta-glucosaminidase urine activity as a marker of early proximal tubule damage and a predictor of the long-term function of the transplanted kidneys. Acta Biochim Pol. 2014;61(2):275–80.

    PubMed  Google Scholar 

  • Leung KC, Tonelli M, James MT. Chronic kidney disease following acute kidney injury-risk and outcomes. Nat Rev Nephrol. 2013;9(2):77–85.

    Article  CAS  PubMed  Google Scholar 

  • Levin ER. Endothelins. N Engl J Med. 1995;333(6):356–63.

    Article  CAS  PubMed  Google Scholar 

  • Liangos O, Perianayagam MC, Vaidya VS, et al. Kidney injury molecule-1 level are associated with adverse outcomes in acute renal failure. J Am Soc Nephrol. 2007;18(3):904–12.

    Article  CAS  PubMed  Google Scholar 

  • Lin HY, Kaji EH, Winkel GK, et al. Cloning and functional expression of a vascular smooth muscle endothelin 1 receptor. Proc Natl Acad Sci U S A. 1991;88(8):3185–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lockwood TD, Bosmann HB. the use of urinary N-acetyl-beta-d-glucosaminidase in human renal toxicology 1. Partial biochemical characterisation and excretion in humans and release from the isolated perfused rat kidney. Toxicol Appl Pharm. 1979;49:323–36.

    Article  CAS  Google Scholar 

  • Loutzenhiser R, Epstein M, Hayashi K, et al. Direct visualization of effects of endothelin on the renal microvasculature. Am J Physiol. 1990;258:F61–8.

    CAS  PubMed  Google Scholar 

  • Maeda S, Tanabe T, Miyauchi T, et al. Aerobic exercise training reduces plasma endothelin-1 concentration in older women. J Appl Physiol. 2003;95:336–41.

    Article  CAS  PubMed  Google Scholar 

  • Mandić LM, Aćimović JM, Jovanović VB. The possibility of determining N-acetyl-beta-d-glucosaminidase isoenzymes under alkaline conditions. Clin Biochem. 2005;38(4):384–9.

    Article  PubMed  CAS  Google Scholar 

  • Masaki T. Historical review: endothelin. Trends Pharmacol Sci. 2004;25(4):219–24.

    Article  CAS  PubMed  Google Scholar 

  • Masaki T, Vane JR, Vanhoutte PM. International union of pharmacology nomenclature of endothelin receptors. Pharmacol Rev. 1994;46(2):137–42.

    CAS  PubMed  Google Scholar 

  • Matsumoto H, Suzuki N, Onda H, et al. Abundance of endothelin-3 in rat intestine, pituitary gland and brain. Biochem Biophys Res Commun. 1989;164(1):74–80.

    Article  CAS  PubMed  Google Scholar 

  • McWilliam SJ, Antoine DJ, Sabbisetti V, et al. Mechanism-based urinary biomarkers to identify the potential for aminoglycoside-induced nephrotoxicity in premature neonates: a proof-of-concept study. PLoS ONE. 2012;7(8):e43809.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Milnerowicz H, Bukowski R, Jablonowska M, et al. The antioxidant profiles, lysosomal and membrane enzymes activity in patients with acute pancreatitis. Mediat Inflamm. 2014;2014:376518.

    Article  CAS  Google Scholar 

  • Mishra J, Dent C, Tarabishi R, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005;365:1231–8.

    Article  CAS  PubMed  Google Scholar 

  • Miyauchi T, Suzuki N, Kurihara T, et al. Endothelin-1 and endothelin-3 play different roles in acute and chronic alterations of blood pressure in patients with chronic hemodialysis. Biochem Biophys Res Commun. 1991;178:276–81.

    Article  CAS  PubMed  Google Scholar 

  • Miyauchi T, Yanagisawa M, Iida K, et al. Age and sex-related variation of plasma endothelin-1 concentration in normal and hypertensive subjects. Am Heart J. 1992;123:1092–3.

    Article  CAS  PubMed  Google Scholar 

  • Mohkam M, Karimi A, Habibian S, et al. Urinary N-acetyl-beta-d-glucosaminidase as a diagnostic marker of acute pyelonephritis in children. Iran J Kidney Dis. 2008;2(1):24–8.

    PubMed  Google Scholar 

  • Moriguchi J, Inoue Y, Kamigama S, et al. N-Acetyl-β-d-glucosaminidase (NAG) as the most sensitive marker of tubular dysfunction for monitoring residents in non-polluted areas. Toxicol Lett. 2009;190:1–8.

    Article  CAS  PubMed  Google Scholar 

  • Morita A, Numata Y, Kosugi Y, et al. Stabilities of N-acetyl-β-d-glucosaminidase (NAG) isoenzymes in urine: advantage of NAG isoenzyme B measurement in clinical applications. Clin Chim Acta. 1998;278:35–43.

    Article  CAS  PubMed  Google Scholar 

  • Mueller PW, MacNeil ML, Steinberg KK. N-acetyl-beta-d-glucosaminidase assay in urine: urea inhibition. J Anal Toxicol. 1989;13(3):188–90.

    Article  CAS  PubMed  Google Scholar 

  • Nakajima K, Kumagaye S, Nishio H, et al. Synthesis of endothelin-1 analogues, endothelin-3, and sarafotoxin S6b: structure-activity relationships. J Cardiovasc Pharmacol. 1989;13 Suppl 5:S8–12; discussion S18.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura S, Naruse M, Naruse K, et al. Immunocytochemical localization of endothelin in cultured bovine endothelial cells. Histochemistry. 1990;94:475–7.

    Article  CAS  PubMed  Google Scholar 

  • Nakano A, Kishi F, Ninami K. Selective conversion of big endothelins to tracheal smooth muscle-constricting 31-amino acid-length endothelins by chymase from human mast cells. J Immunol. 1997;159(4):1987–92.

    CAS  PubMed  Google Scholar 

  • Nicot G, Lachâtre G, Gonnet C, et al. Rapid assay of N-acetyl-beta-d-glucosaminidase isoenzymes in urine by ion-exchange chromatography. Clin Chem. 1987;33(10):1796–800.

    CAS  PubMed  Google Scholar 

  • Noto A, Ogawa Y, Mori S, et al. Simple, rapid spectrophotometry of urinary N-acetylbeta-d-glucosaminidase, with use of a new chromogenic substrate. Clin Chem. 1983;29(10):1713–6.

    CAS  PubMed  Google Scholar 

  • Numata Y, Morita A, Kosugi Y, et al. New sandwich ELISA for human urinary N-acetyl- β-d-glucosaminidase isoenzyme B as a useful clinical test. Clin Chem. 1997;43(4):569–74.

    CAS  PubMed  Google Scholar 

  • Nussdorfer GG, Rossi GP, Malendowicz LK, et al. Autocrine-paracrine endothelin system in the physiology and pathology of steroid-secreting tissues. Pharmacol Rev. 1999;51:403–38.

    CAS  PubMed  Google Scholar 

  • Ohkita M, Wang Y, Nguyen ND, et al. Extrarenal ETB plays a significant role in controlling cardiovascular responses to high dietary sodium in rats. Hypertension. 2005;45(5):940–6.

    Article  CAS  PubMed  Google Scholar 

  • Oka M, Niwa Y, Mawatari K, et al. A novel peptide of endothelin family, 31 amino-acid length endothelin in patients with acute myocardial infarction. J Med Invest. 2014;61(3–4):298–305.

    Article  PubMed  Google Scholar 

  • Okada S, O’Brien JS. Tay-Sachs disease: generalized absence of a beta-d-N-acetylhexosaminidase component. Science. 1969;165(894):698–700.

    Article  CAS  PubMed  Google Scholar 

  • Oláh AV, Price RG, Csáthy L, et al. Age dependence of serum beta-N-acetylhexosaminidase (NAG) activity. Clin Chem Lab Med. 2004;42(3):305–6.

    Article  PubMed  Google Scholar 

  • Opgenorth TJ, Wu-Wong JR, Shiosaki K. Endothelin converting enzymes. FASEB J. 1992;6(9):2653–9.

    CAS  PubMed  Google Scholar 

  • Orlando R, Mussap M, Plebani M, et al. Diagnostic value of plasma cystatin C as a glomerular filtration marker in decompensated liver cirrhosis. Clin Chem. 2002;48:850–8.

    CAS  PubMed  Google Scholar 

  • Plumpton C, Champeney R, Ashby MJ, et al. Characterization of endothelin isoforms in human heart: endothelin-2 demonstrated. J Cardiovasc Pharmacol. 1993;22 Suppl 8:S26–8.

    Article  CAS  PubMed  Google Scholar 

  • Pollock DM, Pollock JS. Evidence for endothelin involvement in the response to high salt. Am J Physiol. 2001;281(1):F144–50.

    CAS  Google Scholar 

  • Price RG. Measurement of N-acetyl-beta-glucosaminidase and its isoenzymes in urine methods and clinical applications. Eur J Clin Chem Clin Biochem. 1992;30(10):693–705.

    CAS  PubMed  Google Scholar 

  • Rabelink TJ, Kaasjager KAH, Boer P, et al. Effects of endothelin-1 on renal function in humans. Implications for physiology and pathophysiology. Kidney Int. 1994;46(2):376–81.

    Article  CAS  PubMed  Google Scholar 

  • Richter CM. Role of endothelin in chronic renal failure-developments in renal involvement. Rheumatology. 2006;45:iii36–8.

    Article  CAS  PubMed  Google Scholar 

  • Robinson BD, Stirling JL. N-acetyl-beta-glucosaminidases in human spleen. Biochem J. 1968;107(3):321–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rubanyi GM, Polokoff MA. Endothelins: molecular biology, biochemistry, pharmacology, physiology, and pathophysiology. Pharmacol Rev. 1994;46:325–415.

    CAS  PubMed  Google Scholar 

  • Saito S, Hirata Y, Imai T, et al. Autocrine regulation of the endothelin-1 gene in rat endothelial cells. J Cardiovasc Pharmacol. 1995;26:84–7.

    Article  Google Scholar 

  • Sakamoto A, Yanagisawa M, Sakurai T, et al. Cloning and functional expression of human cDNA for the ETB endothelin receptor. Biochem Biophys Res Commun. 1991;178(2):656–63.

    Article  CAS  PubMed  Google Scholar 

  • Sakurai T, Yanagisawa M, Masaki T. Molecular characterization of endothelin receptor. Trends Pharmacol Sci. 1992;13:103–8.

    Article  CAS  PubMed  Google Scholar 

  • Saleh MA, Boesen EI, Pollock JS, et al. Endothelin-1 increases glomerular permeability and inflammation independent of blood pressure in the rat. Hypertension. 2010;56(5):942–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sandhoff K. Variation of beta-N-acetylhexosaminidase-pattern in Tay-Sachs disease. FEBS Lett. 1969;4(4):351–4.

    Article  CAS  PubMed  Google Scholar 

  • Sawamura T, Kimura S, Shinmi O, et al. Analysis of endothelin related peptides in culture supernatant of porcine aortic endothelial cells: evidence for biosynthetic pathway of endothelin-1. Biochem Biophys Res Commun. 1989;162(3):1287–94.

    Article  CAS  PubMed  Google Scholar 

  • Schildroth J, Rettig-Zimmermann J, Kalk P, et al. Endothelin type A and B receptors in the control of afferent and efferent arterioles in mice. Nephrol Dial Transplant. 2011;26(3):779–89.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt M, Kröger B, Jacob E, et al. Molecular characterization of human and bovine endothelin converting enzyme (ECE-1). FEBS Lett. 1994;356(2–3):238–43.

    Article  CAS  PubMed  Google Scholar 

  • Semerci T, Cuhadar S, Akcay FA, et al. Comparing the renal safety of isoosmolar versus low-osmolar contrast medium by renal biomarkers N-acetyl-β-d-glucosaminidase and endothelin. Angiology. 2014;65(2):108–12.

    Article  PubMed  Google Scholar 

  • Serneri GGN, Modesti PA, Cecioni I, et al. Plasma endothelin and renal endothelin are two distinct systems involved in volume homeostasis. Am J Physiol. 1995;268:H 1829–37.

    CAS  Google Scholar 

  • Severinl G, Aiiberti LM, Glrolamo MDI. N-Acetyl-β-glucosaminidase isoenzymes in serum and urine of patients with diabetes mellitus. Clin Chem. 1988;34(12):2430–2.

    Google Scholar 

  • Shah R. Endothelins in health and disease. Eur J Int Med. 2007;18(4):272–82.

    Article  CAS  Google Scholar 

  • Sharma RK. Nephrology biomarkers of acute kidney injury. Clin Queries. 2012;1(1):13–7.

    Article  Google Scholar 

  • Shinmi O, Kimura S, Sawamura T, et al. Endothelin-3 is a novel neuropeptide: isolation and sequence determination of endothelin-1 and endothelin-3 in porcine brain. Biochem Biophys Res Commun. 1989;164:587–93.

    Article  CAS  PubMed  Google Scholar 

  • Skálová S.The diagnostic role of urinary N-acetyl-beta-D-glucosaminidase (NAG) activity in the detection of renal tubular impairment. Acta Medica. 2005;48(2):75–80.

    Google Scholar 

  • Speed JS, Pollock DM. Endothelin, kidney disease, and hypertension. Hypertension. 2013;61:1142–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Suzaki Y, Yoshizumi M, Yamashita Y, et al. Determination of plasma concentrations of endothelin-1(1-31) and endothelin-1 in healthy subjects and patients with atherosclerosis. J Cardiovasc Pharmacol. 2003;41:83–7.

    Google Scholar 

  • Suzuki N, Matsumoto H, Kitada C, et al. A sensitive sandwich-enzyme immunoassay for human endothelin. J Immun Methods. 1989;118:245–50.

    Article  CAS  Google Scholar 

  • Thorin E, Clozel M. The cardiovascular physiology and pharmacology of endothelin-1. Adv Pharmacol. 2010;60:1–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tonomura Y, Uehara T, Yamamoto E, et al. Decrease in urinary creatinine in acute kidney injury influences diagnostic value of urinary biomarker-to-creatinine ratio in rats. Toxicology. 2011;290(2–3):241–8.

    Article  PubMed  CAS  Google Scholar 

  • Uchino S, Kellum JA, Bellomo R, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294:813–8.

    Article  CAS  PubMed  Google Scholar 

  • Verhaar MC, Strachan FE, Newby DE, et al. Endothelin-A receptor antagonist-mediated vasodilatation is attenuated by inhibition of nitric oxide synthesis and by endothelin-B receptor blockade. Circulation. 1998;97:752–6.

    Article  CAS  PubMed  Google Scholar 

  • Vidgoff J, Buist NRM, Brien JSO. Absence of β-N-Acetyl-d-Hexosaminidase A activity in a healthy woman. Am J Hum Genet. 1973;25:372–81.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Waikar SS, Curhan GC, Wald R, et al. Declining mortality in patients with acute renal failure, 1998 to 2002. J Am Soc Nephrol. 2006;17:1143–50.

    Article  PubMed  Google Scholar 

  • Waikar SS, Betensky RA, Bonventre JV. Creatinine as the gold standard for kidney injury biomarker studies? Nephrol Dial Transplant. 2009;24(11):3263–5.

    Article  CAS  PubMed  Google Scholar 

  • Wu I, Parikh CR. Screening for kidney diseases: older measures versus novel biomarkers. Clin J Am Soc Nephrol. 2008;3:1895–901.

    Article  CAS  PubMed  Google Scholar 

  • Xu D, Emoto N, Giaid A, et al. ECE-1: a membrane-bound metalloprotease that catalyzes the proteolytic activation of big endothelin-1. Cell. 1994;78(3):473–85.

    Article  CAS  PubMed  Google Scholar 

  • Xue JL, Daniels F, Star RA, et al. Incidence and mortality of acute renal failure in Medicare beneficiaries, 1992 to 2001. J Am Soc Nephrol. 2006;17(4):1135–42.

    Article  PubMed  Google Scholar 

  • Yanagisawa M, Masaki T. Molecular biology and biochemistry of the endothelins. Trends Pharmacol Sci. 1989;10:374–8.

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa M, Kurihara H, Kimura S, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988a;332:411–5.

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa M, Inoue A, Ishikawa T, et al. Primary structure, synthesis and biological activity of rat endothelin, an endothelium-derived vasoconstrictor peptide. Proc Natl Acad Sci U S A. 1988b;85:6964–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zoccali C, Leonardis D, Parlongo S, et al. Urinary and plasma endothelin-1 in essential hypertension and in hypertension secondary to renoparenchymal disease. Nephrol Dial Transplant. 1995;10(8):1320–3.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serap Çuhadar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Çuhadar, S., Semerci, T. (2015). Renal Biomarkers N-Acetyl-Beta-d-Glucosaminidase (NAG), Endothelin, and Their Application. In: Patel, V. (eds) Biomarkers in Kidney Disease. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7743-9_8-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7743-9_8-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-7743-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics