Skip to main content

Single Cell Genomics

  • Living reference work entry
  • First Online:
Handbook of Single Cell Technologies

Abstract

Single cells are the minimum physiological and biological units of tissues and organs. It is critical to isolate individual cells from tissues and characterize them at distinct molecular levels in order to understand the status and fate of each individual cell, their role within the organism, and their cell-to-cell interactions. During the past decade, technical advances in whole genome amplification (WGA) have enabled massive DNA sequencing at the single cell level, and this approach has been extensively applied to study physiological conditions in normal tissues, disease, and development. Single cell genomics was intensively developed to dissect intra-tissue heterogeneity, which is a very powerful tool for uncovering genomic diversity, particularly in cancer. Likewise, epigenetic analysis has been carried out at a single cell level and has provided new insights into cellular variation and refined cell-cell interactions and provided a comprehensive epigenetic atlas of cellular states and lineages. In this chapter, technical improvements in DNA amplification methods and emerging high-dimensional bioinformatics tools will be broadly described with an eventual discussion of perspectives in single cell genomics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Baslan T, Hicks J (2014) Single cell sequencing approaches for complex biological systems. Curr Opin Genet Dev 26:59–65

    Article  Google Scholar 

  • Biesecker LG, Spinner NB (2013) A genomic view of mosaicism and human disease. Nat Rev Genet 14:307–320

    Article  Google Scholar 

  • Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP et al (2015) Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523:486–490

    Article  Google Scholar 

  • Cai X, Evrony GD, Lehmann HS, Elhosary PC, Mehta BK, Poduri A et al (2014) Single-cell, genome-wide sequencing identifies clonal somatic copy-number variation in the human brain. Cell Rep 8:1280–1289

    Article  Google Scholar 

  • Carlson EA, Southin JL (1963) Chemically induced somatic and gonadal mosaicism in Drosophila. I. Sex-linked lethals. Genetics 48:663–675

    Google Scholar 

  • Chen C, Xing D, Tan L, Li H, Zhou G, Huang L et al (2017a) Single-cell whole-genome analyses by Linear Amplification via Transposon Insertion (LIANTI). Science 356:189–194

    Article  Google Scholar 

  • Chen Z, Chen L, Zhang W (2017b) Tools for genomic and transcriptomic analysis of microbes at single-cell level. Front Microbiol 8:1831

    Article  Google Scholar 

  • Chitsaz H, Yee-Greenbaum JL, Tesler G, Lombardo MJ, Dupont CL, Badger JH et al (2011) Efficient de novo assembly of single-cell bacterial genomes from short-read data sets. Nat Biotechnol 29:915–921

    Article  Google Scholar 

  • Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD et al (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219

    Article  Google Scholar 

  • Cotterman CW (1956) Somatic mosaicism for antigen A2. Acta Genet Stat Med 6:520–521

    Google Scholar 

  • Cusanovich DA, Daza R, Adey A, Pliner HA, Christiansen L, Gunderson KL et al (2015) Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348:910–904

    Article  Google Scholar 

  • Dagogo-Jack I, Shaw AT (2018) Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol 15:81–94

    Article  Google Scholar 

  • De S (2011) Somatic mosaicism in healthy human tissues. Trends Genet 27:217–223

    Article  Google Scholar 

  • Dean FB, Hosono S, Fang L, Wu X, Faruqi AF, Bray-Ward P et al (2002) Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci USA 99:5261–5266

    Article  Google Scholar 

  • Dodsworth JA, Blainey PC, Murugapiran SK, Swingley WD, Ross CA, Tringe SG et al (2013) Single-cell and metagenomic analyses indicate a fermentative and saccharolytic lifestyle for members of the OP9 lineage. Nat Commun 4:1854

    Article  Google Scholar 

  • Doherty R, Couldrey C (2014) Exploring genome wide bisulfite sequencing for DNA methylation analysis in livestock: a technical assessment. Front Genet 5:126

    Article  Google Scholar 

  • Eirew P, Steif A, Khattra J, Ha G, Yap D, Farahani H et al (2015) Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature 518:422–426

    Article  Google Scholar 

  • Evrony GD, Cai X, Lee E, Hills LB, Elhosary PC, Lehmann HS et al (2012) Single-neuron sequencing analysis of L1 retrotransposition and somatic mutation in the human brain. Cell 151:483–496

    Article  Google Scholar 

  • Farlik M, Sheffield NC, Nuzzo A, Datlinger P, Schönegger A, Klughammer J et al (2015) Single-cell DNA methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics. Cell Rep 10(8):1386–13897

    Article  Google Scholar 

  • Gao Y, Ni X, Guo H, Su Z, Ba Y, Tong Z et al (2017) Single-cell sequencing deciphers a convergent evolution of copy number alterations from primary to circulating tumor cells. Genome Res 27:1312–1322

    Article  Google Scholar 

  • Gawad C, Koh W, Quake SR (2014) Dissecting the clonal origins of childhood acute lymphoblastic leukemia by single-cell genomics. Proc Natl Acad Sci USA 111:17947–17952

    Article  Google Scholar 

  • Gawad C, Koh W, Quake SR (2016) Single-cell genome sequencing: current state of the science. Nat Rev Genet 17:175–188

    Article  Google Scholar 

  • Gole J, Gore A, Richards A, Chiu YJ, Fung HL, Bushman D et al (2013) Massively parallel polymerase cloning and genome sequencing of single cells using nanoliter microwells. Nat Biotechnol 31:1126–1132

    Article  Google Scholar 

  • Gulbahce N, Magbanua MJM, Chin R, Agarwal MR, Luo X, Liu J et al (2017) Quantitative whole genome sequencing of circulating tumor cells enables personalized combination therapy of metastatic cancer. Cancer Res 77:4530–4541

    Article  Google Scholar 

  • Heitzer E, Auer M, Gasch C, Pichler M, Ulz P, Hoffmann EM et al (2013) Complex tumor genomes inferred from single circulating tumor cells by array-CGH and next-generation sequencing. Cancer Res 73:2965–2975

    Article  Google Scholar 

  • Hou Y, Song L, Zhu P, Zhang B, Tao Y, Xu X et al (2012) Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell 148:873–885

    Article  Google Scholar 

  • Hou Y, Guo H, Cao C, Li X, Hu B, Zhu P et al (2016) Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas. Cell Res 26:304–319

    Article  Google Scholar 

  • Jeyapalan JN, Noor DA, Lee SH, Tan CL, Appleby VA, Kilday JP et al (2011) Methylator phenotype of malignant germ cell tumours in children identifies strong candidates for chemotherapy resistance. Br J Cancer 105:575–585

    Article  Google Scholar 

  • Jin W, Tang Q, Wan M, Cui K, Zhang Y, Ren G et al (2015) Genome-wide detection of DNase I hypersensitive sites in single cells and FFPE tissue samples. Nature 528:142–146

    Google Scholar 

  • Kelsey G, Stegle O, Reik W (2017) Single-cell epigenomics: recording the past and predicting the future. Science 358:69–75

    Article  Google Scholar 

  • Leung ML, Davis A, Gao R, Casasent A, Wang Y, Sei E et al (2017) Single-cell DNA sequencing reveals a late-dissemination model in metastatic colorectal cancer. Genome Res 27:1287–1299

    Article  Google Scholar 

  • Li C, Wu S, Yang Z, Zhang X, Zheng Q, Lin L et al (2017) Single-cell exome sequencing identifies mutations in KCP, LOC440040, and LOC440563 as drivers in renal cell carcinoma stem cells. Cell Res 27:590–593

    Article  Google Scholar 

  • Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293

    Article  Google Scholar 

  • Lin E, Rivera-Báez L, Fouladdel S, Yoon HJ, Guthrie S, Wieger J et al (2017) High-throughput microfluidic Labyrinth for the label-free isolation of circulating tumor cells. Cell Syst 5:295–304.e4

    Article  Google Scholar 

  • Lodato MA, Woodworth MB, Lee S, Evrony GD, Mehta BK, Karger A et al (2015) Somatic mutation in single human neurons tracks developmental and transcriptional history. Science 350:94–98

    Article  Google Scholar 

  • Lohr JG, Adalsteinsson VA, Cibulskis K, Choudhury AD, Rosenberg M, Cruz-Gordillo P et al (2014) Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nat Biotechnol 32:479–484

    Article  Google Scholar 

  • Lu S, Zong C, Fan W, Yang M, Li J, Chapman AR et al (2012) Probing meiotic recombination and aneuploidy of single sperm cells by whole-genome sequencing. Science 338:1627–1630

    Article  Google Scholar 

  • Macaulay IC, Voet T (2014) Single cell genomics: advances and future perspectives. PLoS Genet 10:e1004126

    Article  Google Scholar 

  • Macaulay IC, Ponting CP, Voet T (2017) Single-cell multiomics: multiple measurements from single cells. Trends Genet 33:155–168

    Article  Google Scholar 

  • McClellan J, King MC (2010) Genetic heterogeneity in human disease. Cell 141:210–217

    Article  Google Scholar 

  • Mooijman D, Dey SS, Boisset JC, Crosetto N, van Oudenaarden A (2016) Single-cell 5hmC sequencing reveals chromosome-wide cell-to-cell variability and enables lineage reconstruction. Nat Biotechnol 34:852–856

    Article  Google Scholar 

  • Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W et al (2013) Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502:59–64

    Article  Google Scholar 

  • Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J et al (2011) Tumour evolution inferred by single-cell sequencing. Nature 472:90–94

    Article  Google Scholar 

  • Neale BM, Kou Y, Liu L, Ma’ayan A, Samocha KE, Sabo A et al (2012) Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485:242–245

    Article  Google Scholar 

  • Neri F, Incarnato D, Krepelova A, Rapelli S, Anselmi F, Parlato C et al (2015) Single-base resolution analysis of 5-formyl and 5-carboxyl cytosine reveals promoter DNA methylation dynamics. Cell Rep. pii:S2211-1247 00009-1

    Google Scholar 

  • Ni X, Zhuo M, Su Z, Duan J, Gao Y, Wang Z et al (2013) Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients. Proc Natl Acad Sci USA 110:21083–21088

    Article  Google Scholar 

  • O’Roak BJ, Deriziotis P, Lee C, Vives L, Schwartz JJ, Girirajan S et al (2011) Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet 43:585–589

    Article  Google Scholar 

  • Peng Y, Leung HC, Yiu SM, Chin FY (2012) IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28:1420–1428

    Article  Google Scholar 

  • Peters BA, Kermani BG, Sparks AB, Alferov O, Hong P, Alexeev A et al (2012) Accurate whole-genome sequencing and haplotyping from 10 to 20 human cells. Nature 487:190–195

    Article  Google Scholar 

  • Peters BA, Kermani BG, Alferov O, Agarwal MR, McElwain MA, Gulbahce N et al (2015) Detection and phasing of single base de novo mutations in biopsies from human in vitro fertilized embryos by advanced whole-genome sequencing. Genome Res 25:426–434

    Article  Google Scholar 

  • Poduri A, Evrony GD, Cai X, Walsh CA (2013) Somatic mutation, genomic variation, and neurological disease. Science 341:1237758

    Article  Google Scholar 

  • Pott S (2017) Simultaneous measurement of chromatin accessibility, DNA methylation, and nucleosome phasing in single cells. Elife 6. pii:e23203

    Google Scholar 

  • Rotem A, Ram O, Shoresh N, Sperling RA, Goren A, Weitz DA et al (2015) Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat Biotechnol 33:1165–1172

    Article  Google Scholar 

  • Roux S, Hawley AK, Torres Beltran M, Scofield M, Schwientek P, Stepanauskas R et al (2014) Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta-genomics. Elife 3:e03125

    Article  Google Scholar 

  • Singer T, McConnell MJ, Marchetto MC, Coufal NG, Gage FH (2010) LINE-1 retrotransposons: mediators of somatic variation in neuronal genomes? Trends Neurosci 33:345–354

    Article  Google Scholar 

  • Smallwood SA, Lee HJ, Angermueller C, Krueger F, Saadeh H, Peat J et al (2014) Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods 11:817–820

    Article  Google Scholar 

  • Telenius H, Carter NP, Bebb CE, Nordenskjöld M, Ponder BA, Tunnacliffe A (1992) Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics 13:718–725

    Article  Google Scholar 

  • Van der Aa N, Zamani Esteki M, Vermeesch JR, Voet T (2013) Preimplantation genetic diagnosis guided by single-cell genomics. Genome Med 5:71

    Article  Google Scholar 

  • Wang J, Song Y (2017) Single cell sequencing: a distinct new field. Clin Transl Med 6:10

    Article  Google Scholar 

  • Wang J, Fan HC, Behr B, Quake SR (2012) Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm. Cell 150:402–412

    Article  Google Scholar 

  • Wang Y, Waters J, Leung ML, Unruh A, Roh W, Shi X et al (2014) Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512:155–160

    Article  Google Scholar 

  • Wu X, Inoue A, Suzuki T, Zhang Y (2017) Simultaneous mapping of active DNA demethylation and sister chromatid exchange in single cells. Genes Dev 31:511–523

    Article  Google Scholar 

  • Xu X, Hou Y, Yin X, Bao L, Tang A, Song L et al (2012) Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 148:886–895

    Article  Google Scholar 

  • Yan L, Huang L, Xu L, Huang J, Ma F, Zhu X et al (2015) Live births after simultaneous avoidance of monogenic diseases and chromosome abnormality by next-generation sequencing with linkage analyses. Proc Natl Acad Sci USA 112:15964–15969

    Article  Google Scholar 

  • Yilmaz S, Singh AK (2012) Single cell genome sequencing. Curr Opin Biotechnol 23:437–443

    Article  Google Scholar 

  • Yoon HS, Price DC, Stepanauskas R, Rajah VD, Sieracki ME, Wilson WH et al (2011) Single-cell genomics reveals organismal interactions in uncultivated marine protists. Science 332:714–717

    Article  Google Scholar 

  • Youssoufian H, Pyeritz RE (2002) Mechanisms and consequences of somatic mosaicism in humans. Nat Rev Genet 3:748–758

    Article  Google Scholar 

  • Yu M, Stott S, Toner M, Maheswaran S, Haber DA (2011) Circulating tumor cells: approaches to isolation and characterization. J Cell Biol 192:373–382

    Article  Google Scholar 

  • Zhang L, Cui X, Schmitt K, Hubert R, Navidi W, Arnheim N (1992) Whole genome amplification from a single cell: implications for genetic analysis. Proc Natl Acad Sci USA 89:5847–5851

    Article  Google Scholar 

  • Zhang K, Martiny AC, Reppas NB, Barry KW, Malek J, Chisholm SW et al (2006) Sequencing genomes from single cells by polymerase cloning. Nat Biotechnol 24:680–686

    Article  Google Scholar 

  • Zhu C, Gao Y, Guo H, Xia B, Song J, Wu X et al (2017) Single-cell 5-formylcytosine landscapes of Mammalian early embryos and ESCs at single-base resolution. Cell Stem Cell 20:720–731.e5

    Article  Google Scholar 

  • Zong C, Lu S, Chapman AR, Xie XS (2012) Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 338:1622–1626

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by MEXT KAKENHI (Grant-in-Aid for Young Scientists (A); grant number: 17H04991) and Research grant from The Naito Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Yamamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yamamoto, Y., Calle, A.S., Ochiya, T. (2018). Single Cell Genomics. In: Santra, T., Tseng, FG. (eds) Handbook of Single Cell Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-10-4857-9_11-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4857-9_11-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4857-9

  • Online ISBN: 978-981-10-4857-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics