Skip to main content
Log in

Silica fracture

Part II A ring opening model via hydrolysis

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A quantitative model of environmentally sensitive crack growth of amorphous silica (a-silica) is based upon semiempirical molecular orbital (MO) calculations (AM-1 method) of a water molecule interacting with strained three- and four-fold silica rings and a five-fold ring-chain structure. The energy barrier for hydrolysis of strained 3-fold rings is only 7 kcal mol−1, the energy barrier for hydrolysis of strained four-fold rings is 29 kcal mol−1; for a five-fold ring-chain it is 39 kcal mol−1. Thus, the MO model predicts that the energetics of Region 1 slow crack growth is controlled primarily by the distribution and hydrolysis of three-membered silica rings in the a-silica structure, and Region III is controlled by the distribution and energy of contraction of four and four + membered rings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. A. Michalske and S. W. Freiman, J. Am. Ceram. Soc. 66 (1983) 284.

    Article  CAS  Google Scholar 

  2. T. A. Michalske and B. C. Bunker, J. Appl. Phys. 56 (1984) 2686.

    Article  CAS  Google Scholar 

  3. R. J. Bell and P. Dean, Philos. Mag. 25 (1972) 1381.

    Article  CAS  Google Scholar 

  4. F. L. Galeener, J. Non-Cryst. Solids 49 (1982) 53.

    Article  CAS  Google Scholar 

  5. MOPAC Version 6.1, Tektronix, Inc., CaChe Scientific, Beaverton, OR (1994).

  6. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. P. Stewart, J. Am. Chem. Soc. 107 (1985) 3902.

    Article  CAS  Google Scholar 

  7. M. J. S. Dewar and C. Jie, 6 (1987) 1486.

    CAS  Google Scholar 

  8. J. K. West and S. Wallace, in “Chemical Processing of Advanced Materials”, edited by L. L. Hench and J. K. West (Wiley, New York, 1992) p. 159.

    Google Scholar 

  9. Stephen Wallace, Jon K. West and Larry L. Hench, J. Non-Cryst. Solids 152 (1993) 101.

    Article  CAS  Google Scholar 

  10. J. K. West and S. Wallace, 152 (1993) 109.

    Article  CAS  Google Scholar 

  11. K. D. Keefer, in “Better Ceramics Through Chemistry”, Vol. 32, edited by C. J. Brinker, D. E. Clark and D. R. Ulrich (Elsevier, New York, 1984) p. 15.

    Google Scholar 

  12. L. L. Hench and J. K. West, Chem. Rev. 90 (1990) 33.

    Article  CAS  Google Scholar 

  13. A. G. Revesz and G. V. Gibbs, in “The Physics of MOS Insulators”, edited by G. Lucousky, S. T. Pantelides and F. L. Galeener (Pergamon, New York, 1980) pp. 92.

    Chapter  Google Scholar 

  14. S. M. Wiederhorn, J. Am. Ceram. Soc. 50 (1967) 407.

    Article  CAS  Google Scholar 

  15. John J. Mecholsky Jr and Stephen W. Freiman, 74 (1991) 3136.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

West, J.K., Hench, L.L. Silica fracture. JOURNAL OF MATERIALS SCIENCE 29, 5808–5816 (1994). https://doi.org/10.1007/BF00366861

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00366861

Keywords

Navigation