Skip to main content
Log in

The oxidation of sulfur containing cyclic ketimines The sulfoxide is the main product of S-aminoethyl-cysteine ketimine autoxidation

  • Published:
Amino Acids Aims and scope Submit manuscript

Summary

The products of autoxidation of S-aminoethyl-L-cysteine ketimine (AECK) have been analysed with the amino acid analyzer, with thin layer chromatography and with high performance liquid chromatography. Under the conditions of the assay (pH 8.5, 38°C, O2 bubbling) AECK is almost totally oxidized in 1.5 hours. Among the final products a component running fast in HPLC, named Cx1, has been isolated, reduced with NaBH4 and analysed. Reduced Cx1 resulted to show the same properties of synthetic thiomorpholine-3-carboxylic acid-S-oxide, known in the past literature with the name of “chondrine”. On the basis of these results and by specific chromatographic tests, Cx1 has been identified as the sulfoxide of AECK. Among the other autoxidation products, thiomorpholine-3-one has been identified. The detection, after HCl hydrolysis, of glyoxylic acid and mesoxalic semialdehyde together with cysteamine indicates that compounds provided with easily cleavable S-C bonds, possibly thiohemiacetals or (and) thioesters, are the likely intermediates for other products. AECK sulfoxide and thiomorpholine-3-one are relatively stable and cannot be taken as the main intermediates for the remaining oxidation products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AAA:

amino acid analyzer

TLC:

thin layer chromatography

HPLC:

high performance liquid chromatography

AECK:

S-aminoethyl-L-cysteine ketimine

AECK-SO:

aminoethylcysteine ketimine sulfoxide

TMA:

thiomorpholine-3-carboxylic acid

TMA-SO:

thiomorpholine-3-carboxylic acid-S-oxide

CMCA:

S-carboxymethylcysteamine

DNPH:

2,4-dinitrophenylhydrazine

References

  • Antonucci A, Pecci L, Montefoschi G, Cavallini D (1990) High performance liquid chromatography of keto acids. Rend Fis Acc Lincei 1: 479–483

    Google Scholar 

  • Antonucci A, Pecci L, Fontana M, Cavallini D (1992) High performance liquid chromatography of the ketimine forms of aminoethylcysteine, lanthionine and cystathionine after precolumn derivatization with 2,4-dinitrophenylhydrazine. Rend Fis Acc Lincei (in press)

  • Awwad HK, Adelstein SJ (1966) A quantitative method for the determination of the specific radioactivity of sulfur-containing amino acids separated by paper chromatography. Anal Biochem 16: 433–437

    Google Scholar 

  • Carson JF, Wong FF (1964) The synthesis of L-thiazane-3-carboxylic acid 1-oxide. J Org Chem 29: 223–225

    Google Scholar 

  • Carson JF, Boggs LE, Lundin R (1968) The base cyclization of vinylic cysteine sulfones. J Org Chem 33: 3739–3743

    Google Scholar 

  • Cavallini D (1950) Analisi spettrofotometrica dei 2,4-dinitrofenilidrazoni di alcuni chetoacidi di importanza biologica. Ricerca Scientifica 20: 803–807

    Google Scholar 

  • Cavallini D, De Marco C, Mondovi' B (1959) Chromatographic evidence on the occurrence of thiotaurine in the urine of rats fed with cystine. J Biol Chem 234: 854–857

    Google Scholar 

  • Cini C, Foppoli C, De Marco C (1978a) Oxidative deamination of thialysine by snake venom L-amino acid oxidase. Ital J Biochem 27: 305–320

    Google Scholar 

  • Cini C, Foppoli C, De Marco C (1978b) On the product of the reaction between cysteamine and 3-bromopyruvate. Ital J Biochem 27: 233–245

    Google Scholar 

  • Costa M, Pensa B, Fontana M, Foppoli C, Cavallini D (1986) Transamination of L-cystathionine and related compounds by a bovine liver enzyme. Possible identification with glutamine transaminase. Biochim Biophys Acta 881: 314–320

    Google Scholar 

  • Däbritz E, Virtanen AI (1965) S-Vinyl-cysteine-S-oxide, ein Homologes zur Vorstufe der tränentreibenden Substanz der Zwiebel. Chem Ber 98: 781–788

    Google Scholar 

  • De Marco C, Riva F, Duprè S (1964) Synthesis and chromatographic properties of S-carboxymethylcysteamine. Anal Biochem 8: 269–271

    Google Scholar 

  • Hermann P (1961) Zur Reaktion von Halogenbrenztraubensäure mit Thiolaminen. Chem Ber 94: 442–445

    Google Scholar 

  • Hermann P, Willhardt I (1968) Nichtenzymatische Transaminierung einiger schwefelhaltiger Aminosäure-Analoga mit Glyoxylsäure und Metallionen. Z Physiol Chem 349: 395–398

    Google Scholar 

  • Hermann P, Stalla K, Schwimmer J, Willhardt I, Kutschera I (1969) Synthese einiger schwefelhaltiger Aminosäure-Analoga. J Pract Chem 311: 1018–1028

    Google Scholar 

  • Jones LA, Hancock CK (1960) Spectrophotometric studies of 2,4-dinitrophenylhydrazones of some dicarbonyl compounds. J Org Chem 82: 105–107

    Google Scholar 

  • Kuriyama M, Tagagi M, Murata K (1960) Ninhydrin reactive substances in marine algae. Bull Fac Fisheries Hokkaido Univ 11: 58–63

    Google Scholar 

  • Matarese RM, Pecci L, Ricci G, Cavallini D (1984) Gas chromatographic determination of thiazine and thiazepine derivatives of biological interest. J Chromatogr 294: 413–418

    Google Scholar 

  • Matarese RM, Solinas SP, Montefoschi G, Ricci G, Cavallini D (1989) Identification of 1,4-thiomorpholine-3-carboxylic acid (TMA) in normal human urine. FEBS Lett 250: 75–77

    Google Scholar 

  • Nardini M, Ricci G, Caccurri AM, Solinas SP, Vesci L, Cavallini D (1988) Purification and characterization of a ketimine reducing enzyme. Eur J Biochem 173: 689–694

    Google Scholar 

  • Nardini M, Matarese RM, Pecci L, Antonucci A, Ricci G, Cavallini D (1990) Detection of 2H-1,4-thiazine-5,6-dihydro-3-carboxylic acid (aminoethylcysteine ketimine) in bovine brain. Biochem Biophys Res Commun 166: 1251–1256

    Google Scholar 

  • Newton GL, Dorian R, Fahey RC (1981) Analysis of biological thiols: derivatization with monobromobimane and separation by reverse-phase high-performance liquid chromatography. Anal Biochem 114: 383–387

    Google Scholar 

  • Pecci L, Antonucci A, Matarese RM, Solinas SP, Cavallini D (1991) Dimerization and other changes of aminoethylcysteine ketimine. Physiol Chem Phys & Med NMR 23: 221–227

    Google Scholar 

  • Savige WE, Fontana A (1977) Interconversion of methionine and methionine sulfoxide. Methods Enzymol 47: 453–459

    Google Scholar 

  • Solinas SP, Pecci L, Montefoschi G, Cavallini D (1992) The reducing activity of S-aminoethylcysteine ketimine and similar sulfur containing ketimines. Biochem Biophys Res Commun 183: 481–486

    Google Scholar 

  • Sprinson DB, Chargaff E (1946) A study ofβ-hydroxy-α-keto acids. J Biol Chem 146: 417–432

    Google Scholar 

  • Tominaga F, Kazuko O (1963) On the isolation and identification of 1,4-thiazane-3-carboxylic acid S-oxide from the brown alga Undaria pinnatifida. J Biochem 54: 222–224

    Google Scholar 

  • Toennies G, Kolb JJ (1939) Methionine studies. dl-Methionine sulfoxide. J Biol Chem 128: 399–405

    Google Scholar 

  • Toennies G, Kolb JJ (1951) Techniques and reagents for paper chromatography. Anal Chem 23: 823–826

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pecci, L., Solinas, S.P., Antonucci, A. et al. The oxidation of sulfur containing cyclic ketimines The sulfoxide is the main product of S-aminoethyl-cysteine ketimine autoxidation. Amino Acids 5, 23–32 (1993). https://doi.org/10.1007/BF00806189

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00806189

Keywords

Navigation