Skip to main content
Log in

Dynamical supersymmetry of the magnetic monopole and the 1/r 2-potential

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We examine the recently discovered dynamical OSp(1, 1) supersymmetry of the Pauli Hamiltonian for a spin 1/2 particle with gyromagnetic ratio 2, in the presence of a Dirac magnetic monopole. Using this symmetry and algebraic methods only, we construct the spectrum and obtain the wave functions. At all but the lowest angular momenta, the states transform under a single irreducible representation of OSp(1, 1). On the lowest angular momentum states, it is impossible to define self-adjoint supercharges, and the states transform under an irreducible representation of SO(2, 1) only. The Hamiltonian is not self-adjoint in thes-wave sector, but admits a one parameter family of self-adjoint extensions. The full SO(2, 1) algebra can be realized only for two specific values of the parameter.

The Pauli Hamiltonian is generalized to accommodate aλ 2/r 2 potential. The new Hamiltonian exhibits a dynamical OSp(2, 1) supersymmetry. The spectrum and the wave functions are obtained. The states at all but the lowest angular momenta transform under the sum of two irreducible representations of OSp(2, 1). These two representations are distinguished by the “chirality” of their ground state. On the lowest angular momentum states, the OSp(2, 1) group is still realized, since the supercharges can all be rendered self-adjoint simultaneously, but the states only transform according to a single irreducible representation of OSp(2, 1). The chirality of the ground state for this representation is related to the signs ofλ andeg. The Hamiltonian is not self-adjoint in thes-wave sector when |λ|<3/2. Only one of its self-adjoint extensions supports the OSp(2, 1) supersymmetry, and yields the wave functions obtained from the group theoretic approach. The supersymmetry is always spontaneously broken as there exists no normalizable zero energy states.

The massless Dirac Hamiltonian in the presence of a magnetic monopole and aλ/r potential is related to a generator of an OSp(2, 1) superalgebra which also contains the Pauli Hamiltonian. This symmetry is used to generate the complete spectrum of the Dirac Hamiltonian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fock, V.: Zur theorie des Wasserstoffatoms. Z. Physik98, 145 (1935); Bargmann, V.: Zur Theorie des Wasserstoffatoms. Bermekungen zur gleichnamigen Arbeit von V. Fock. Z. Physik99, 576 (1936); Bander, M., Itzykson, C.: Group theory and the hydrogen atom (I) and (II). Rev. Mod. Phys.38, 330 and 346 (1966); McIntosh, H. V.: Symmetry and degeneracy. In: Group Theory and its Applications, Vol. II, Loebl, E. M. (ed.). New York: Academic Press 1971; Engelfield, M. J.: Group Theory and the Coulomb Problem. New York: Wiley Interscience 1972

    Google Scholar 

  2. For a review see Barut, A. O. In: Dynamical groups and generalized symmetries in quantum theory. Brooks, A. N. (ed.). Bascards Ltd. 1972

  3. deAlfaro, V., Fubini, S., Furlan, G.: Conformal invariance in quantum mechanics. Nuovo CimentoA34, 569 (1976)

    Google Scholar 

  4. Jackiw, R.: Dynamical Symmetry of the magnetic monopole. Ann. Phys. (NY)129, 183 (1980)

    Google Scholar 

  5. D'Hoker, E. Vinet, L.: Supersymmetry of the Pauli equation in the presence of a magnetic monopole. Phys. Lett.B137, 72 (1984)

    Google Scholar 

  6. Wu, T. T., Yang, C. N.: Dirac monopole without strings: Monopole harmonics. Nucl. Phys.B107, 365 (1976)

    Google Scholar 

  7. Berezin, F. A., Marinov, M. S.: Classical spin and Grassman algebra. JETP Lett.21, 30 (1975), Particle spin dynamics as the Grassmann variant of classical mechanics. Ann. phys. (N.Y.)104, 336 (1977); Casalbuoni, R.: Relatively and supersymmetries. Phys. Lett.62B, 9 (1976), The classical mechanics for Bose-Fermi systems. Nuovo CimentoA33, 389 (1976); Brink, L., Deser, S., Furino, B., DiVecchia, P., Howe, P.: Local supersymmetry for spinning particles. Phys. Lett.64B, 435 (1976).

    Google Scholar 

  8. Pais, A., Rittenberg, V.: Semisimple graded Lie algebras. J. Math. Phys.16, 2062 (1975); Nahm, W., Scheunert, M.: On the structure of simple pseudo Lie algebras and their invariant bilinear forms. J. Math. Phys.17, 868 (1976); Scheunert, M., Nahm, W., Rittenberg, V.: Irreducible representation of the osp (2, 1) and spl (2, 1) graded Lie algebras, J. Math. Phys.18, 155 (1977)

    Google Scholar 

  9. D'Hoker, E. Classical and quantal supersymmetric Liouville theory. Phys. Rev.D28, 1346 (1983)

    Google Scholar 

  10. Wybourne, B. Classical groups for physicists. N.Y. Wiley, 1974

  11. Kazama, Y., Yang, C. N., Goldhaber, A. S.: Scattering of a Dirac particle with charge Ze by a fixed magnetic monopole. Phys. Rev.D15, 2287 (1977); Goldhaber, A. S.: Dirac particle in a magnetic field: Symmetries and their breaking by monopole singularities. Phys. Rev.D16, 1815 (1977); Callias, C.: Spectra of fermions in monopole fields—Exactly soluble models. Phys. Rev.D16, 3068 (1977)

    Google Scholar 

  12. Fubini, S., Rabinovici, E. Superconformal quantum mechanics. CERN Preprint (1984)

  13. 't Hooft, G.: Computation of the quantum effects due to a four dimensional pseudoparticle. Phys. Rev.D14, 3432 (1976)

    Google Scholar 

  14. Tamm, I.: Die verallgemeinerten Kugelfunktionen und die Wellenfunktionen eines Elektrons in Felde eines Magnetpoles. Z. Physik71, 141 (1931)

    Google Scholar 

  15. 't Hooft, G.: Magnetic monopoles in unified gauge theories. Nucl. Phys.B79, 276 (1974); Polyakov, A. M. Particle spectrum in quantum field theory. JETP Lett.20, 194 (1974)

    Google Scholar 

  16. D'Hoker, E., Farhi, E.: The Abelian monopole fermion system and its self adjoint extensions as a limit of a non-Abelian system. Phys. Lett.B127, 360 (1983)

    Google Scholar 

  17. Reed, M., Simon, B.: Fourier analysis, self-adjointedness. New York: Academic Press, 1975; Akhiezer, N., Glazman, I.: Theory of linear operators in Hilbert space, Vol. II. NY: F. Ungar. Publ. 1978

    Google Scholar 

  18. Abramowitz, N., Stegun, I.: Handbook of mathematical functions. NY: Dover, 1972

    Google Scholar 

  19. Callias, C.: The heat equation with singular coefficients, I: Operators of the formd 2/dx 2+kx 2 in dimension 1. Commun. Math. Phys.88, 357 (1983)

    Google Scholar 

  20. Yamagishi, H.: M.I.T. Preprint (1984) CTP 1136

  21. D' Hoker, E., Jackiw, R.: Classical and quantal Liouville field theory. Phys. Rev.D26, 3517 (1982); Space-translation breaking and compactification in the Liouville theory. Phys. Rev. Lett.50, 1719 (1983); D' Hoker, E., Freedman, D. Z., Jackiw, R.:SO(2, 1)-invariant quantization of the Liouville theory. Phys. Rev.D28, 2583 (1983); Bernard, C., Lautrup, B., Rabinovici, E.: CERN Preprint TH 3671 (1983)

    Google Scholar 

  22. Witten, E.: Constraints on supersymmetry breaking. Nucl. Phys.B202, 253 (1982)

    Google Scholar 

  23. Akhoury, R., and Comtet, A.: UCLA Preprint (1984)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Jaffe

This work is supported in part through funds provided by the U.S. Department of Energy (DOE) under contract DE-AC02-76ER03069, and by the Natural Science and Engineering Research Council (NSERC) of Canada

Rights and permissions

Reprints and permissions

About this article

Cite this article

D'Hoker, E., Vinet, L. Dynamical supersymmetry of the magnetic monopole and the 1/r 2-potential. Commun.Math. Phys. 97, 391–427 (1985). https://doi.org/10.1007/BF01213405

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01213405

Keywords

Navigation