Skip to main content
Log in

A physiologically based pharmacokinetic model for butadiene and its metabolite butadiene monoxide in rat and mouse and its significance for risk extrapolation

  • Original Investigations
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The gas 1,3-butadiene (BU) is an important industrial chemical and an environmental air pollutant. BU has been shown to be a weak carcinogen in the rat but a potent carcinogen in the B6C3F1 mouse. This species difference makes risk extrapolation to humans difficult and the underlying mechanism should be clarified before meaningful risk extrapolation to humans can be made. One possible explanation for the species differences in cancer response is that there are quantitative species differences in the formation of genotoxic epoxides. To investigate this possibility a physiologically based pharmacokinetic (pbpk) model for BU together with its first reactive metabolite l,2-epoxybutene-3 (butadiene monoxide, BMO) was developed. Previously reported values on hepatic glutathione (GSH) turnover, depletion of hepatic GSH in rodents exposed to BU, and in vitro metabolic data of BU and BMO were included in the model, which incorporates intrahepatic first-pass hydrolysis of BMO and the ordered sequential, ping-pong mechanism to describe the enzyme kinetics of BMO-GSH conjugation. In vitro studies were carried out to obtain tissue: air partition coefficients of BU and BMO in rat tissue homogenates. The simulated pharmacokinetics of BU, BMO, and GSH agreed with previously published experimental observations in rat and mouse obtained in closed and open chamber experiments. According to the model, the internal dose of BMO (expressed either as the concentration in mixed venous blood or as the area under the concentration-time curve) is approximately 1.6 times higher in the mouse than in the rat for exposure to BU below 1000 ppm. At higher exposure levels, GSH depletion occurs in the mouse, but not in the rat, after about 6–9 h. This GSH depletion results in up to 2–3 times higher internal doses in the mouse than in the rat. The clear but relatively small species difference in body burdens of BMO indicated from our model can only partly explain the marked species difference in cancer response between mice and rats exposed to BU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson J (1983) Molecular biology of the cell. (eds) Garland Academic Press, New York, pp319–384

    Google Scholar 

  • Arms A, Travis C (1988) Reference physiological parameters in pharmacokinetic modelling. EPA/600/6-88/004. US Environmental Protection Agency

  • Bolt HM, Filser JG, Störmer F (1984) Inhalation pharmacokinetics based on gas uptake studies. V. Comparative pharmacokinetics of ethylene and 1,3-butadiene in rats. Arch Toxicol 55: 213–218

    Article  PubMed  Google Scholar 

  • Bond JA, Dahl AR, Henderson RF, Dutcher JS, Mauderly JL, Birnbaum LS (1986) Species differences in the disposition of inhaled butadiene. Toxicol Appl Pharmacol 84: 617–627

    Article  PubMed  Google Scholar 

  • Bond JA, Martin OS, Birnbaum LS, Dahl AR, Melnick RL, Henderson RF (1988) Metabolism of 1,3-butadiene by lung and liver microsomes of rats and mice repeatedly exposed by inhalation to 1,3-butadiene. Toxicol Lett 44: 143–151

    Article  PubMed  Google Scholar 

  • Boyland E, Chasseaud LF (1970) The effect of some carbonyl compounds on rat liver glutathione levels. Biochem Pharmacol 19: 1526–1528

    Article  PubMed  Google Scholar 

  • Candrian U, You M, Goodrow T, Maronpot RR, Reynolds SH, Anderson EA (1991) Activation of protooncogens in spontaneously occuring non-liver tumors from C57BL/6 X C3H F1 mice. Cancer Res 51: 1148–1153

    PubMed  Google Scholar 

  • Csanády GA, Bond JA (1992) Comparison of the biotransformation of 1,3-butadiene and its metabolite, butadiene monoepoxide, by hepatic and pulmonary tissues from humans, rats, and mice. Carcinogenesis 13: 1143–1153

    PubMed  Google Scholar 

  • Cunningham MJ, Choy WN, Arce GT, Rickard LB, Vlachos DA, Kinney LA, Sarrif AM (1986) In vivo sister chromatid exchange and micronucleus induction studies with 1,3-butadiene in B6C3F1 mice and Sprague-Dawley rats. Mutagenesis 1: 449–452

    PubMed  Google Scholar 

  • Dahl AR, Bechtold WE, Bond JA, Henderson RF, Mauderly JL, Muggenburg BA, Sun JD, Birnbaum LS (1990) Species differences in the metabolism and disposition of inhaled 1,3-butadiene and isoprene. Environ Health Perspect 86: 65–69

    PubMed  Google Scholar 

  • Das M, Dixit R, Mushtaq M, Srivastava SP, Seth PK (1981) Effect of styrene on hepatic mixed function oxidases, glutathione content and glutathione-S-transferase activity in rats. Drug Chem Toxicol 4: 219–227

    PubMed  Google Scholar 

  • Deutschmann S (1988) Vergleichende Untersuchungen zur Depletion von zellulärem Glutathion durch 1,3-Butadien bei Maus und Ratte. Thesis. Ruhr-Universität, Bochum, Germany

    Google Scholar 

  • Deutschmann S, Laib RJ (1989) Concentration-dependent depletion of non-protein sulfhydryl (NPSH) content in lung, heart and liver tissue of rats and mice after acute inhalation exposure to butadiene. Toxicol Lett 45: 175–183

    Article  PubMed  Google Scholar 

  • Dirr HW, Schabort JC (1988) Purification and partial characterization of the glutathione S-transferase of rat erythrocytes. Biochem Biophys Acta 957: 173–177

    PubMed  Google Scholar 

  • D'Souza RW, Francis WR, Andersen ME (1988) Physiological model for tissue glutathione depletion and increased resynthesis after ethylene dichloride exposure. J Pharmacol Exp Ther 245: 563–568

    PubMed  Google Scholar 

  • Farooqui MYH, Ahmed AE (1984) Circadian periodicity of tissue glutathione and its relationship with lipid peroxidation in rats. Life Sci 34: 2413–2418

    Article  PubMed  Google Scholar 

  • Filser JG (1992) The closed chamber technique — uptake, endogenous production, excretion, steady-state kinetics and rates of metabolism of gases and vapors. Arch Toxicol 66: 1–10

    PubMed  Google Scholar 

  • Filser JG, Bolt HM (1984) Inhalation pharmacokinetics based on gas uptake studies. VI. Comparative evaluation of ethylene oxide and butadiene monoxide as exhaled reactive metabolites of ethylene and 1,3-butadiene in rats. Arch Toxicol 55: 219–223

    Article  PubMed  Google Scholar 

  • Filser JG, Althaler B, Welter HF, Baur C, Johanson G (1992) Metabolism of 1,3-butadiene in microsomes from livers of mouse, rat, and man. Naunyn-Schmiedeberg's Arch Toxicol Suppl 345: R31

    Google Scholar 

  • Frederick C, Potter D, Chang-Mateu M, Andersen ME (1992) A physiologically based pharmacokinetic and pharmacodynamic model to describe the oral dosing of rats with ethyl acrylate and its implications for risk assessment. Toxicol Appl Pharmacol 114: 246–260

    Article  PubMed  Google Scholar 

  • Gargas M (1991) Chemical-specific constants for physiologically-based pharmacokinetic models. CUT Activities 11: 1–9

    Google Scholar 

  • Gervasi PG, Citti L, Del Monte M, Longo V, Benetti D (1985) Mutagenicity and chemical reactivity of epoxidic intermediates of the isoprene metabolism and other structurally related compounds. Mutat Res 156: 77–82

    Article  PubMed  Google Scholar 

  • Goodrow T, Reynolds S, Maronpot R, Anderson M (1990) Activation of K-ras by codon 13 mutations in C57BL/6 X C3H F1 mouse tumors induced by exposure to 1,3-butadiene. Cancer Res 50: 4818–4823

    PubMed  Google Scholar 

  • Hallenbeck W (1992) Cancer risk assessment for the inhalation of 1,3-butadiene using physiologically based pharmacokinetic modelling. Bull Environ Contain Toxicol 49: 66–70

    Google Scholar 

  • Harisch G, Mahmoud MF (1980) The glutathione status in the liver and cardiac muscle of rats after starvation. Hoppe-Seyler's Z Physiol Chem 361: 1859–1862

    PubMed  Google Scholar 

  • Higashi T, Tateishi N, Naruse A, Sakamoto Y (1977) A novel physiological role of liver glutathione as a reservoir ofL-cysteine. J Biochem 82: 117–124

    PubMed  Google Scholar 

  • Huff JE, Melnick RL, Solleveld HA, Haseman JK, Powers M, Miller RA (1985) Multiple organ carcinogenicity of 1,3-butadiene in B6C3F1 mice after 60 weeks of inhalation exposure. Science 227: 548–549

    PubMed  Google Scholar 

  • IARC (1986) 1,3-Butadiene. Monogr Eval Carcinogen Risk Chem Hum 39: 155–179

    Google Scholar 

  • Irons RD, Cathro HP, Stillman WS, Steinhagen WH, Shah RS (1989) Susceptibility to 1,3-butadiene-induced leukemogenesis correlates with endogenous ecotropic retroviral background in the mouse. Toxicol Appl Pharmacol 101: 170–176

    Article  PubMed  Google Scholar 

  • Jaeger RJ, Conolly RB, Murphy SD (1973) Diurnal variation of hepatic glutathione concentration and its correlation with 1,1-dichloroethylene inhalation toxicity in rats. Res Commun Chem Pathol Pharmacol 6: 465–471

    PubMed  Google Scholar 

  • Jaeschke H, Wendel A (1985) Diurnal fluctuation and pharmacological alteration of mouse organ glutathione content. Biochem Pharmacol 34: 1029–1033

    Article  PubMed  Google Scholar 

  • Jauhar PP, Henika PR, MacGregor JT, Wehr CM, Shelby MD, Murphy SA, Margolin BH (1988) 1,3-Butadiene: induction of micronucleated erythrocytes in the peripheral blood of B6C3F1 mice exposed by inhalation for 13 weeks. Mutat Res 209: 171–176

    Article  PubMed  Google Scholar 

  • Jelitto B, Vangala RR, Laib RJ (1989) Species differences in DNA damage by butadiene: role of diepoxybutane. Arch Toxicol Suppl 13: 246–249

    PubMed  Google Scholar 

  • Johanson G, Filser J (1992) Experimental data from closed chamber gas uptake studies in rodents suggest lower uptake rate of chemical than calculated from literature values on alveolar ventilation. Arch Toxicol 66: 291–295

    PubMed  Google Scholar 

  • Johanson G, Näslund PH (1988) Spreadsheet programming — a new approach in physiologically based modeling of solvent toxicokinetics. Toxicol Lett 41: 115–127

    Article  PubMed  Google Scholar 

  • Kaplowitz N, Aw TY, Ookhtens M (1985) The regulation of hepatic glutathione. Annu Rev Pharmacol Toxicol 25: 715–744

    Article  PubMed  Google Scholar 

  • Katoh T, Higashi K, Inoue N, Tanaka I (1990) Different responses of cytosolic and mitochondrial glutathione in rat livers after ethylene oxide exposure. Toxicol Lett 54: 235–239

    Article  PubMed  Google Scholar 

  • Ketterer B, Meyer DJ, Clark AG (1988) Soluble glutathione transferase isozymes. In: Sies H, Ketterer B (eds) Glutathione conjugation. Mechanisms and biological significance. Academic Press, London, pp 74–137

    Google Scholar 

  • Kornbrust DJ, Bus JS (1984) Glutathione depletion by methyl chloride and association with lipid peroxidation in mice and rats. Toxicol Appl Pharmacol 72: 388–399

    Article  PubMed  Google Scholar 

  • Kreiling R (1987) Studien zur Pharmakokinetik und zum Mechanismus der krebserzeugenden Wirkung von 1,3-Butadien: ein Speziesvergleich. Thesis, Justus Liebig-Universität, Gießen, Germany

    Google Scholar 

  • Kreiling R, Laib RJ, Bolt HM (1986 a) Alkylation of nuclear proteins and DNA after exposure of rats and mice to:1,4-14C: 1,3-butadiene. Toxicol Lett 30: 131–136

    Article  PubMed  Google Scholar 

  • Kreiling R, Laib RJ, Filser JG, Bolt HM (1986b) Species differences in butadiene metabolism between mice and rats evaluated by inhalation pharmacokinetics. Arch Toxicol 58: 235–238

    Article  PubMed  Google Scholar 

  • Kreiling R, Laib RJ, Filser JG, Bolt HM (1987) Inhalation pharmacokinetics of l,2-epoxybutene-3 reveal species differences between rats and mice sensitive to butadiene-induced carcinogenesis. Arch Toxicol 61: 7–11

    Article  PubMed  Google Scholar 

  • Kreiling R, Laib RJ, Bolt HM (1988) Depletion of hepatic non-protein sulfhydryl content during exposure of rats and mice to butadiene. Toxicol Lett 41: 209–214

    Article  PubMed  Google Scholar 

  • Kreuzer PE (1989) Enzymspecifische Kinetik von Butadienmonoxid in Zytosol und Mikrosomen aus Lebern von Maus, Ratte und Mensch, Diploma work, Technische Universität München, München, Germany

    Google Scholar 

  • Kreuzer PE, Kessler W, Welter HF, Baur C, Filser JG (1991) Enzyme specific kinetics of 1,2-epoxybutene-3, in microsomes and cytosol from livers of mouse, rat, and man. Arch Toxicol 65: 59–67

    PubMed  Google Scholar 

  • Lauterburg BH, Mitchell JR (1981) Regulation of hepatic glutathione turnover in rats in vivo and evidence for kinetic homogeneity of the hepatic glutathione pool. J Clin Invest 67: 1415–1424

    PubMed  Google Scholar 

  • Lauterburg BH, Vaishnav Y, Stillwell WG, Mitchell JR (1980) The effects of age and glutathione depletion on hepatic glutathione turnover in vivo determined by acetaminophen probe analysis. J Pharmacol Exp Ther 213: 54–58

    PubMed  Google Scholar 

  • Lauterburg BH, Adams JD, Mitchell JR (1984) Hepatic glutathione homeostasis in the rat: efflux accounts for glutathione turnover. Hepatology 4: 586–590

    PubMed  Google Scholar 

  • Lieser (1983) Tierexperimentelle Pharmakokinetik von 1,3-Butadiene. Thesis, Johannes-Gutenberg-Universität, Mainz, Germany

    Google Scholar 

  • Malvoisin E, Roberfroid M (1982) Hepatic microsomal metabolism of 1,3-butadiene. Xenobiotica 12: 137–144

    PubMed  Google Scholar 

  • Mannervik B (1985) The isoenzymes of glutathione transferase. Adv Enzymol 57: 357–417

    PubMed  Google Scholar 

  • Melnick RL, Huff JE, Chou B, Miller R (1990) Carcinogenicity of 1,3-butadiene in C57BL/6 X C3H F1 mice at low exposure concentrations. Cancer Res 50: 6592–6599

    PubMed  Google Scholar 

  • Mori K, Kaido M, Fujishiro K, Inoue N (1989) Testicular toxicity and alterations of glutathione metabolism resulting from chronic inhalation of ethylene oxide in rats. Toxicol Appl Pharmacol 101: 299–309

    Article  PubMed  Google Scholar 

  • Morton S, Mitchell MC (1985) Effects of chronic ethanol feeding on glutathione turnover in the rat. Biochem Pharmacol 34: 1559–1563

    Article  PubMed  Google Scholar 

  • Oesch F (1973) Mammalian epoxide hydrases: inducible enzymes catalyzing the inactivation of carcinogenic and cytotoxic metabolites derived from aromatic and olefinic compounds. Xenobiotica 3: 305–340

    PubMed  Google Scholar 

  • Osterman-Golkar S, Kautiainen A, Bergmark E, Hakansson K, Mäki-Paakkanen J (1991) Hemoglobin adducts and urinary mercapturic acids in rats as biological indicators of butadiene exposure. Chem Biol Interact 80: 291–302

    Article  PubMed  Google Scholar 

  • Owen PE, Glaister JR, Gaunt IF, Pullinger DH (1987) Inhalation toxicity studies with 1,3-butadiene. 3. Two year toxicity/carcinogenicity study in rats. Am Ind Hyp Assoc J 48: 407–413

    Google Scholar 

  • Pacifici GM, Warholm M, Guthenberg C, Mannervik B, Rane A (1987) Detoxification of styrene oxide by human liver glutathione transferase. Hum Toxicol 6: 483–489

    PubMed  Google Scholar 

  • Pierson JL, Mitchell MC (1986) Increased hepatic efflux of glutathione after chronic ethanol feeding. Biochem Pharmacol 35: 1533–1537

    Article  PubMed  Google Scholar 

  • Ristau C, Deutschmann S, Laib RJ, Ottenwälder H (1990) Detection of diepoxybutane-induced DNA-DNA crosslinks by cesium trifluoroacetate (CsTFA) density-gradient centrifugation. Arch Toxicol 64: 343–344

    PubMed  Google Scholar 

  • Rolzhäuser H-P (1985) Pharmakokinetik von Butadienmonoxid. Thesis, Johannes-Gutenberg-Universität, Mainz, Germany

    Google Scholar 

  • Schmidt U, Loeser E (1985) Species differences in the formation of butadiene monoxide from 1,3-butadiene. Arch Toxicol 57: 222–225

    Article  PubMed  Google Scholar 

  • Sun JD, Dahl AR, Bond JA, Birnbaum LS, Henderson RF (1989) Characterization of hemoglobin adduct formation in mice and rats after administration of [14C]butadiene or [14C]isoprene. Toxicol Appl Pharmacol 100: 86–95

    Article  PubMed  Google Scholar 

  • Thurmond LM, Lauer LD, House RV, Stillman WS, Irons RD, Steinhagen WH, Dean JH (1986) Effect of short-term inhalation exposure to 1,3-butadiene on murine immune functions. Toxicol Appl Pharmacol 86: 170–179

    Article  PubMed  Google Scholar 

  • White BP, Davies MH, Schnell RC (1987) Circadian variations in hepatic glutathione content, γ-glutamylcysteine synthetase and γ-glutamyl transferase activities in mice. Toxicol Lett 35: 217–223

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johanson, G., Filser, J.G. A physiologically based pharmacokinetic model for butadiene and its metabolite butadiene monoxide in rat and mouse and its significance for risk extrapolation. Arch Toxicol 67, 151–163 (1993). https://doi.org/10.1007/BF01973302

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01973302

Key words

Navigation