Skip to main content
Log in

Drug transport across the blood-brain barrier

I. Anatomical and physiological aspects

  • Reviews
  • Published:
Pharmaceutisch Weekblad Aims and scope Submit manuscript

Abstract

This review describes various aspects of the transport of drugs across the blood-brain barrier and comprises three parts. In this first part, the anatomical and physiological aspects of blood-brain transport are discussed. It appears that the blood-brain barrier has an anatomical basis at the endothelium of the capillary wall. This endothelium is characterized by the presence of very tight junctions. As a result, the transport by passive diffusion of drugs with a low lipophilicity, is restricted. For certain classes of closely related relatively hydrophilic compounds, however, the presence of specialized carrier systems has been demonstrated which may facilitate transport. Also evidence is presently available, that the permeability of the blood-brain barrier may be under active regulatory control. It is expected that improved knowledge of the anatomical and physiological aspects of the blood-brain barrier and its regulation will provide a scientific basis for the development of strategies to improve the transport of drugs into the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ehrlich P. Das Sauerstoffbedürfenis des Organismus; eine farbenanalytische Studie. Berlin: Hirschwald, 1885.

    Google Scholar 

  2. Goldmann EE. Die aussere und innere Sekretion des gesunden und kranken Organismus im Lichte der vitalen Farbung. Beitr Klin Chirurg 1909;64:192–265.

    Google Scholar 

  3. Goldmann EE. Vitalfarbung am Zentral-Nerven-system. Abh Preuss Akad Wiss, Phys-Math KL I. 1913:1–60.

  4. Spatz H. Die Bedeutung der vitalen Farbung für die Lehre vom Stofaustausch zwischen dem Zentralner-vensystem und dem übrigen Körper. Arch Psychiatr Nervenkr 1933;101:267–358.

    Article  Google Scholar 

  5. Walter FK. Die allgemeinen Grundlagen des Stoffaustausches zwischen dem Zentralnervensystem und dem übrigen Körper. Arch Psychiatr Nervenkr 1930;101:195–230.

    Article  Google Scholar 

  6. Krogh A. The active and passive exchanges of inorganic ions through the surfaces of living cells and through living membranes generally. Proc R Soc Lond [Biol] 1946;133:140–200.

    Google Scholar 

  7. Dempsey EW, Wislocki GB. An electron microscopic study of the blood-brain barrier in the rat, employing silver nitrate as a vital stain. J Biophys Biochem Cytol 1955;1:245–56.

    PubMed  Google Scholar 

  8. Pappenheimer JR, Renkin EM, Borrero LM. Filtration, diffusion and molecular sieving through peripheral capillary membranes. Am J Physiol 1951;183:221–34.

    Google Scholar 

  9. Crone C. The permeability of brain capillaries to non-electrolytes. Acta Physiol Scand 1965;64:407–17.

    PubMed  Google Scholar 

  10. Reese TS, Karnovsky MJ. Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 1967;34:207–17.

    Article  PubMed  Google Scholar 

  11. Brightman MW, Reese TS. Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 1969;40:648–77.

    Article  PubMed  Google Scholar 

  12. Reed DJ. Drug transport into the central nervous system. In: Glaser GH, Pentry JK, Woodbury DM, eds. Antiepileptic drugs: mechanisms of action. New York: Raven Press, 1980:199–205.

    Google Scholar 

  13. Lee JC. Evolution in the concept of the blood-brain barrier phenomenon. In: Zimmermann HM, ed. Progress in neuropathology, vol I. New York: Grune and Stratton, 1971:84–145.

    Google Scholar 

  14. Cervos-Navarro J. Electronmikroskopischen Befund an den Capillaren der Hirnrinde. Arch Psychiat Nervenkr 1963;204:484–504.

    Google Scholar 

  15. Goodenough DA, Revel JP. A fine ultrastructural analysis of the intercellular junctions in mouse liver. J Cell Biol 1970;45:272–90.

    Article  PubMed  Google Scholar 

  16. Claude P, Goodenough DA. Fracture faces of zonae occludentes from tight and leaky epithelia. J Cell Biol 1973;58:390–400.

    Article  PubMed  Google Scholar 

  17. Madara JL. Tight junction dynamics: is paracellular transport regulated? Cell 1988;53:497–8.

    Article  PubMed  Google Scholar 

  18. Stevenson BR, Siliciano JD, Mooseker MS, Goodenough DA. Identification of ZO-I: a high molecular weight polypeptide associated with the tight junction in a variety of epithelia. J Cell Biol 1986;103:755–66.

    Article  PubMed  Google Scholar 

  19. Fenstermacher JD, Rapoport SI. Blood-brain barrier. In: Renkin EM, Michel CC, eds. Handbook of physiology. Section 2. Microcirculation, IV. Bethesda: American Physiology Society, 1984:969–1000.

    Google Scholar 

  20. Crone C. Lack of sensitivity to small ions in paracellular pathways in cerebral and muscle capillaries of the frog. J Physiol 1984;353:317–37.

    PubMed  Google Scholar 

  21. Renkin EM. Transport of proteins by diffusion, bulk flow and vesicular mechanisms. Physiologist 1980;23:57–61.

    PubMed  Google Scholar 

  22. Van Bree JBMM, De Boer AG, Danhof M, Ginsel LA, Breimer DD. Characterization ofin vitro blood-brain barrier: effects of molecular size and lipophilicity on cerebrovascular endothelial transport rates of drugs. J Pharmacol Exp Ther 1988;247:1233–9.

    PubMed  Google Scholar 

  23. Birnboim AS, Cooper JA, Delvecchio PJ, Lum H, Malik AB. Selectivity of the endothelial monolayer: effects of increased permeability. Microvasc Res 1988;36:216–27.

    Article  PubMed  Google Scholar 

  24. Yoshida Y, Ikuta F, Watabe K, Nagata T. Developmental microvascular architecture of the rat cerebellar cortex. Anat Embryol (Berl) 1985;171:129–38.

    Article  Google Scholar 

  25. Levine RL, Fredericks WR, Rapoport SI. Entry of bilirubin into the brain due to opening of the blood-brain barrier. Pediatrics 1982;69:255–9.

    PubMed  Google Scholar 

  26. Mollgard K, Saunders NR. The development of the human blood-brain and blood-cerebrospinal fluid barriers. Neuropathol Appl Neurobiol 1986;12:337–58.

    PubMed  Google Scholar 

  27. Roncali L, Nico B, Ribatti D, Bertossi M, Mancini L. Microscopical and ultrastructural investigations on the development of the blood-brain barrier in the chick embryo optical tectum. Act Neuropathol (Berl) 1986;70:193–201.

    Article  Google Scholar 

  28. Lossinsky AS, Vorbrodt AW, Wisniewski HM. Characterization of endothelial cell transport in the developing mouse blood-brain barrier. Dev Neurosci 1986;8:61–75.

    PubMed  Google Scholar 

  29. Cornford EM, Braun LD, Oldendorf WH, Hill MA. Comparison of lipid-mediated blood-brain barrier penetrability in neonates and adults. Am J Physiol 1982;243:C161-C8.

    PubMed  Google Scholar 

  30. Joó F. Current aspects of the development of the blood-brain barrier. Int J Dev Neurosci 1987;5:369–72.

    Article  PubMed  Google Scholar 

  31. DeBault LE, Cancilla PA. Gamma-glutamyl transpeptidase in isolated brain endothelial cells: induction by glial cellsin vitro. Science 1980;207:653–5.

    PubMed  Google Scholar 

  32. Beck DW, Vinters HV, Hart MN, Cancilla PA. Glial cells influence polarity of the blood-brain barrier. J Neuropathol Exp Neurol 1984;43:219–24.

    PubMed  Google Scholar 

  33. Janzer RC, Raff MC. Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 1987;325:253–7.

    Article  PubMed  Google Scholar 

  34. Arthur FE, Shivers RR, Bowman PD. Astrocytemediated induction of tight junctions in brain capillary endothelium: an efficientin vitro model. Dev Brain Res 1987;36:155–9.

    Article  Google Scholar 

  35. Tao Cheng JH, Brightman MW. Development of membrane interactions between brain endothelial cells and astrocytesin vitro. Int J Dev Neurosci 1988;6:25–37.

    Article  PubMed  Google Scholar 

  36. Bradbury M. The concept of a blood-brain barrier. London: John Wiley & Sons, 1979:22.

    Google Scholar 

  37. Pollay M, Curl F. Secretion of cerebrospinal fluid by the ventricular ependyma of the rabbit. Am J Physiol 1967;213:1031–8.

    PubMed  Google Scholar 

  38. Gross PM, Weindl A. Peering through the windows of the brain. J Cereb Blood Flow Metab 1987;7:663–72.

    PubMed  Google Scholar 

  39. Fenstermacher JD, Patlak CS. The exchange of materials between cerebrospinal fluid and brain. In: Cserr HF, Fenstermacher JD, Fencl V, eds. Fluid environment of the brain. New York: Academic Press, 1975.

    Google Scholar 

  40. Karol MD, Veng-Pedersen P, Brashear RE, DeAtley RE. Effect of alterations of cerebrospinal fluid bulk flow on nicotine cerebrospinal fluid exit transfer kinetics. J Pharm Sci 1988;77:571–8.

    PubMed  Google Scholar 

  41. Fenstermacher JD, Patlak CS, Blasberg RG. Transport of material between brain extracellular fluid, brain cells and blood. Fed Proc 1974;33:2070–4.

    PubMed  Google Scholar 

  42. Campbell KB, Ringo JA, Alexander JE. Informational analysis of left-ventricle/systemic-arterial interaction. Ann Biomed Eng 1984;12:209–31.

    PubMed  Google Scholar 

  43. Levin VA, Landahl HD. Pharmacokinetic approaches to drug distribution in the cerebrospinal fluid based on ventricular administration in beagle dogs. J Pharmacokin Biopharm 1985;13:387–403.

    Article  Google Scholar 

  44. Aird RB. A study of intrathecal cerebrospinal fluid exchange. Exp Neurol 1984;86:342–58.

    Article  PubMed  Google Scholar 

  45. Bates IP. Permeability of the blood-brain barrier. TiPS 1985;6:447–50.

    Google Scholar 

  46. Pardridge WM. Blood-brain barrier transport of nutrients. Fed Proc 1986;45:2047–9.

    PubMed  Google Scholar 

  47. Pardridge WM. Transport of nutrients and hormones through the blood-brain barrier. Fed Proc 1984;43:201–4.

    PubMed  Google Scholar 

  48. Crone C. Facilitated transfer of glucose to brain tissue. J Physiol (Lond) 1965;181:103–13.

    Google Scholar 

  49. Pardridge WM. Carrier mediated transport of thyroid hormones through the blood-brain barrier. Primary role of albumin bound hormone. Endocrinology 1979;105:605–12.

    PubMed  Google Scholar 

  50. Dembri A. Caracteristiques du transport des analogues structuraux des hormones thyroidiennes a travers la barrière hémato-encéphalique. C R Soc Biol (Paris) 1981;181:249–57.

    Google Scholar 

  51. Spector R. Myo-inositol transport through the blood-brain barrier. Neurochem Res 1988;13:785–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Bree, J.B.M.M., de Boer, A.G., Danhof, M. et al. Drug transport across the blood-brain barrier. Pharmaceutisch Weekblad Scientific Edition 14, 305–310 (1992). https://doi.org/10.1007/BF01977618

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01977618

Keywords

Navigation