Skip to main content
Log in

Induction of systemic resistance in faba bean (Vicia faba L.) to bean yellow mosaic potyvirus (BYMV) via seed bacterization with plant growth promoting rhizobacteria

Induzierte systemische Resistenz gegenüber dem Bohnengelbmosaikvirus in der Dicken Bohne (Vicia faba L.) durch Saatgutbehandlung mit wachstumsfördernden Rhizobakterien

  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

In a greenhouse experiment, two plant growth promoting rhizobacteria „Pgpr“ strains (Pseudomonas fluorescens FB11 and a Rhizobium leguminosarum bv. viceae FBG05) isolated from roots of faba bean plants were tested singly and in combination as seed inoculants for induction of systemic resistance in faba bean against bean yellow mosaic potyvirus (BYMV). The results demonstrated that BYMV challenged plants emerged from Pseudomonas inoculated seeds not only showed a pronounced and significant reduction in percent disease incidence (PDI) but also a significant reduction in virus concentration (ELISA) in the challenged plants, compared to the nonbacterized, challenged plants. Rhizobium singly also showed a significant reduction in both Pdi and ELISA value, but the reduction was less pronounced than that resulting from Pseudomonas inoculation. Combined inoculation with Pseudomonas and Rhizobium showed no additional significant reduction in Pdi or ELISA value compared with Pseudomonas singly. Appreciable and significant increase in both salicylic acid level and peroxidase activity was observed in leaves of all Pgpr inoculated plants compared to other treatments. Since the Pgpr inoculants (Pseudomonas and Rhizobium) and the pathogen (BYMV) remained spatially separated, it can be concluded that the tested Pseudomonas or Rhizobium strains induced systemic resistance in faba bean against BYMV.

Zusammenfassung

Zwei das Pflanzenwachstum fördernde Rhizobakterienisolate (Pgpr) aus Wurzeln der Dicken Bohne, Pseudomonas fluorescens Fb11 and Rhizobium leguminosarum bv. viceae Fbg05, wurden einzeln und kombiniert als Saatgutbehandlungsmittel hinsichtlich einer induzierten Resistenz der Dicken Bohne gegenüber dem Bohnengelbmosaikvirus (BYMV) im Gewächshaus überprüft. Dem BYMV ausgesetzte Bohnenpflanzen zeigten nach einer Pseudomonas-Behandlung im Vergleich zur unbehandelten Kontrolle nicht nur eine deutlich verminderte Befallshäufigkeit im Bestand (Bhb), sondern darüber hinaus eine signifikant verminderte Viruskonzentration im ELISA-Test. Eine Rhizobium-Behandlung des Saatguts bewirkte ebenfalls signifikant verminderte BHB- und ELISA-werte, die allerdings unter denen Pseudomonas-behandelter Pflanzen lagen. Eine kombinierte Saatgutbehandlung mit Pseudomonas und Rhizobium übertraf die Wirkung der Pseudomonas-Einzelbehandlung nicht. Die Blätter aller PGPR-behandelten Pflanzen zeigten gegenüber der unbehandelten Kontrolle erhöhte Salicylsäurekonzentrationen und Peroxidaseaktivitäten Die räumliche Trennung der als Saatgutbehandlungsmittel verwendeten Pseudomonas- und Rhizobium- Isolate vom Pathogen (BYMV) deutet darauf hin, dass sie in den Bohnenpflanzen eine induzierte Resistenzreaktion gegenüber dem Virus auslösten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Bergstrom, G.C., M.C. Johnson, J. Kuc, 1982: Effects of local infection of cucumber by Colletotrichum lagenarium, Pseudomonas lachrymans, or tobacco necrosis virus on systemic resistance to cucumber mosaic virus. Phytopathology 72, 922–926.

    Article  Google Scholar 

  • Brunt, A., K. Crabtree, A. Gibbs, 1990: Viruses of Tropical Plants. Cab International, Wallingford, Uk.

    Google Scholar 

  • Dashti, N., F. Zhang, R. Hynes, D.L. Smith, 1998: Plant growth promoting bacteria accelerate nodulation and increase nitrogen fixation activity by field grown soybean [Glycine max (L.) Merr.] under short season conditions. Plant Soil 200, 205–213.

    Article  CAS  Google Scholar 

  • DeMeyer, G., K. Capieau, K. Audenaert, A. Buchala, J-P. Metraux, M. Höfte, 1999: Nanogram amounts of salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7Nsk2 activate the systemic acquired resistance pathway in bean. Mol. Plant-Microbe Interact. 12, 450–458.

    Article  CAS  Google Scholar 

  • Denny, T.P., 1995: Involvement of bacterial polysaccharides in plant pathogenesis. Annu. Rev. Phytopathol. 33, 173–197.

    Article  CAS  PubMed  Google Scholar 

  • Derks, A.F.L.M., J.L. Vink-Van Den Abeele, P.J. Muller, 1980: Bean yellow mosaic virus in some iridaceous plants. Acta Hort. 110, 31–37.

    Article  Google Scholar 

  • Dileep Kumar, B.S., H.C. Dube, 1992: Seed bacterization with a fluorescent Pseudomonas for enhanced plant growth, yield and disease control Soil Biol. Biochem. 24, 539–542.

    Google Scholar 

  • Frison, E.A., L. Bos, R.I. Hamilton, S.B. Mathur, J.D. Taylor, 1990: Technical Guidelines for the Safe Movement of Legume Germplasm. Food and Agriculture Organization of the United Nations, Rome, Italy.

    Google Scholar 

  • Gross, D.C., A.K. Vidaver, 1978: Bacteriocin-like substances produced by Rhizobium japonicum and slow growing rhizobia. Appl. Environ. Microbiol. 36, 936–943.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hammerschmidt, R., S. Acres, J. Kuc, 1982: Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiol. Plant Pathol. 20, 73–80.

    Article  CAS  Google Scholar 

  • Kessman, H., T. Staub, C. Hofmann, E. Ward, S. Uknes, J. Ryals, 1994: Induction of systemic acquired resistance in plants by chemicals. Annu. Rev. Phytopathol. 32, 439–459.

    Article  Google Scholar 

  • Leeman, M., F.M. den Ouden, J.A. Van Pelt, F.P.M. Dirkx, H. Steijl, P.A.H.M. Bakker, B. Schippers, 1996: Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 86, 149–155.

    Article  CAS  Google Scholar 

  • Leeman, M., J.A. Van Pelt, F.M. Den Ouden, M. Heinsbroek, P.A.H.M. Bakker, B. Schippers, 1995: Induction of systemic resistance against Fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology 85, 1021–1027.

    Article  CAS  Google Scholar 

  • Leigh, J.A., D.L. Coplin, 1992: Exopolysaccharides in plant-bacterial interactions. Annu. Rev. Microbiol. 46, 307–346.

    Article  CAS  PubMed  Google Scholar 

  • Mahmoud, S.A., M.M. El-Haady, K.A. Ali, M.A. Omar, L. Rizkalla, 1998: Screening for faba bean necrotic yellow virus resistance in faba bean. J. Agric. Sci. Mansoura Univ. 23, 4743–4745.

    Google Scholar 

  • Mann, E.W., 1969: Inhibition of tobacco mosaic virus by a bacterial extract. Phytopathology 59, 658–662.

    CAS  PubMed  Google Scholar 

  • Maurhofer, M., C. Hase, P. Meuwly, J-P. Metraux, G. Defago, 1994: Induction of systemic resistance of tobacco to tobacco necrosis virus by the root colonizing Pseudomonas fluorescens strain CHA0: Influence of the gacA gene and of pyoverdine production. Phytopathology 84, 139–146.

    Article  CAS  Google Scholar 

  • McLaughlin, M.R., O.W. Barnett, P.B. Gibson, P.M. Burrows, 1984: Enzyme-linked immunosorbent assay of viruses infecting forage legumes. Phytopathology 74, 965–969.

    Article  Google Scholar 

  • Meuwly, P., J.-P. Metraux, 1993: Ortho-ansinic acid as internal standard for the simultaneous quantification of salicylic acid and its putative biosynthetic precursors in cucumber leaves. Anal. Biochem. 214, 500–505.

    Article  CAS  PubMed  Google Scholar 

  • Meyer, J.M., M.A. Abdallah, 1978: The fluorescent pigment of Pseudomonas fluorescence, biosynthesis, purification and physiological properties J. Gen. Microbiol. 107, 319–328.

    Article  CAS  Google Scholar 

  • Parmar, N., K.R. Dadarwal, 1999: Stimulation of nitrogen fixation and induction of flavonoid-like compounds by rhizobacteria. J. Appl. Microbiol. 86, 36–44.

    Article  CAS  Google Scholar 

  • Raskin, I., 1992: Role of salicylic acid in plants. Annu. Rev. Plant Physiol. 43, 439–463.

    Article  CAS  Google Scholar 

  • Reddy, D.V.R., P.W. Amin, D. Mcdonald, A.M. Ghanekar, 1983: Epidemiology and control of groundnut bud necrosis and other diseases of legume crops in India caused by Tomato spotted wilt virus. In: R.T. Plumb, J.M. Thresh (eds.): Plant Virus Epidemiology: The Spread and Control of Insect-Borne Viruses, pp. 93–102. Proceedings of Plant Virus Epidemiology Conference, 29–31 July 1981. Blackwell, Oxford, Uk.

    Google Scholar 

  • Ross, F.A., 1961: Systemic acquired resistance induced by localized virus-infection in plants. Virology 14, 340–358.

    Article  CAS  PubMed  Google Scholar 

  • Ryals, J., S. Uknes, E. Ward, 1994: Systemic acquired resistance. Plant Physiol. 104, 1109–1112.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Somasegaran, P., H.J. Hoben, 1994: Handbook for Rhizobia: Methods in Legume-Rhizobium Technology. Springer-Verlag, New York and Berlin.

    Book  Google Scholar 

  • Steiner, U., F. Schönbeck, 1995: Induced disease resistance in monocots. In: R. Hammerschmidt, J. Kuc (eds.): Induced Resistance to Disease in Plants, pp. 86–110. Kluwer, Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • Van Loon, L.C., P.A.H.M. Bakker, C.M.J. Pieterse, 1998: Systemic induced resistance by rhizosphere bacteria. Annu. Rev. Phytopathol. 36, 453–483.

    Article  PubMed  Google Scholar 

  • Van Peer, R., B. Schippers, 1992: Lipopolysaccharides of plant growth promoting Pseudomonas spp. strain Wcs417r induce resistance in carnation to Fusarium wilt. Neth. J. Plant Path. 98, 129–139.

    Article  Google Scholar 

  • Vincent, J.M., 1970: Manual for the Practical Study of Root-Nodule Bacteria. Ibp Handbook No. 15, Blackwell, Oxford, Uk.

    Google Scholar 

  • Zehnder, G.W., C. Yao, J.F. Murphy, E.R. Sikora, J.W. Kloepper, D.J. Schuster, J.E. Polston, 1999: Microbe-induced resistance against pathogens and herbivores: Evidence of effectiveness in agriculture. In: A.A. Agrawal, S. Tuzun, E. Bent (eds.): Induced Plant Defenses Against Pathogens and Herbivores: Biochemistry, Ecology, and Agriculture, pp. 335–355. American Phytopathological Society, St. Paul, Mn, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Elbadry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbadry, M., Taha, R.M., Eldougdoug, K.A. et al. Induction of systemic resistance in faba bean (Vicia faba L.) to bean yellow mosaic potyvirus (BYMV) via seed bacterization with plant growth promoting rhizobacteria. J Plant Dis Prot 113, 247–251 (2006). https://doi.org/10.1007/BF03356189

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03356189

Key words

Stichwörter

Navigation