Skip to main content
Log in

Inflation, moduli (de)stabilization and supersymmetry breaking

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the cosmological inflation from the viewpoint of the moduli stabilization. We study the scenario that the superpotential has a large value during the inflation era enough to stabilize moduli, but it is small in the true vacuum. This scenario is discussed by using a simple model, one type of hybrid models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  2. N.V. Krasnikov, On Supersymmetry Breaking in Superstring Theories, Phys. Lett. B 193 (1987) 37 [SPIRES].

    ADS  Google Scholar 

  3. T.R. Taylor, Dilaton, gaugino condensation and supersymmetry breaking, Phys. Lett. B 252 (1990) 59 [SPIRES].

    ADS  Google Scholar 

  4. J.A. Casas, Z. Lalak, C. Muñoz and G.G. Ross, Hierarchical supersymmetry breaking and dynamical determination of compactification parameters by nonperturbative effects, Nucl. Phys. B 347 (1990) 243 [SPIRES].

    Article  ADS  Google Scholar 

  5. B. de Carlos, J.A. Casas and C. Muñoz, Supersymmetry breaking and determination of the unification gauge coupling constant in string theories, Nucl. Phys. B 399 (1993) 623 [hep-th/9204012] [SPIRES].

    Article  ADS  Google Scholar 

  6. R. Kallosh and A.D. Linde, Landscape, the scale of SUSY breaking and inflation, JHEP 12 (2004) 004 [hep-th/0411011] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. H. Abe, T. Higaki and T. Kobayashi, KKLT type models with moduli-mixing superpotential, Phys. Rev. D 73 (2006) 046005 [hep-th/0511160] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  8. H. Abe, T. Higaki, T. Kobayashi and O. Seto, Non-perturbative moduli superpotential with positive exponents, Phys. Rev. D 78 (2008) 025007 [arXiv:0804.3229] [SPIRES].

    ADS  Google Scholar 

  9. M. Badziak and M. Olechowski, Volume modulus inflection point inflation and the gravitino mass problem, JCAP 02 (2009) 010 [arXiv:0810.4251] [SPIRES].

    ADS  Google Scholar 

  10. M. Badziak and M. Olechowski, Volume modulus inflation and a low scale of SUSY breaking, JCAP 07 (2008) 021 [arXiv:0802.1014] [SPIRES].

    ADS  Google Scholar 

  11. T. He, S. Kachru and A. Westphal, Gravity waves and the LHC: Towards high-scale inflation with low-energy SUSY, JHEP 06 (2010) 065 [arXiv:1003.4265] [SPIRES].

    Article  ADS  Google Scholar 

  12. A. Saltman and E. Silverstein, The scaling of the no-scale potential and de Sitter model building, JHEP 11 (2004) 066 [hep-th/0402135] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. M. Gomez-Reino and C.A. Scrucca, Locally stable non-supersymmetric Minkowski vacua in supergravity, JHEP 05 (2006) 015 [hep-th/0602246] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. O. Lebedev, H.P. Nilles and M. Ratz, de Sitter vacua from matter superpotentials, Phys. Lett. B 636 (2006) 126 [hep-th/0603047] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  15. E. Dudas, C. Papineau and S. Pokorski, Moduli stabilization and uplifting with dynamically generated F-terms, JHEP 02 (2007) 028 [hep-th/0610297] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. H. Abe, T. Higaki, T. Kobayashi and Y. Omura, Moduli stabilization, F-term uplifting and soft supersymmetry breaking terms, Phys. Rev. D 75 (2007) 025019 [hep-th/0611024] [SPIRES].

    ADS  Google Scholar 

  17. H. Abe, T. Higaki and T. Kobayashi, More about F-term uplifting, Phys. Rev. D 76 (2007) 105003 [arXiv:0707.2671] [SPIRES].

    ADS  Google Scholar 

  18. R. Kallosh and A.D. Linde, O’KKLT, JHEP 02 (2007) 002 [hep-th/0611183] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. O. Lebedev, V. Lowen, Y. Mambrini, H.P. Nilles and M. Ratz, Metastable vacua in flux compactifications and their phenomenology, JHEP 02 (2007) 063 [hep-ph/0612035] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. M. Serone and A. Westphal, Moduli Stabilization in Meta-Stable Heterotic Supergravity Vacua, JHEP 08 (2007) 080 [arXiv:0707.0497] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. A. Achucarro and K. Sousa, F-term uplifting and moduli stabilization consistent with Kähler invariance, JHEP 03 (2008) 002 [arXiv:0712.3460] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  22. H. Abe, T. Higaki, T. Kobayashi and Y. Omura, Dynamically sequestered F-term uplifting in extra dimension, JHEP 04 (2008) 072 [arXiv:0801.0998] [SPIRES].

    Article  MathSciNet  Google Scholar 

  23. L. Covi et al., de Sitter vacua in no-scale supergravities and Calabi-Yau string models, JHEP 06 (2008) 057 [arXiv:0804.1073] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. L. Covi et al., Constraints on modular inflation in supergravity and string theory, JHEP 08 (2008) 055 [arXiv:0805.3290] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. G.R. Dvali, Q. Shafi and R.K. Schaefer, Large scale structure and supersymmetric inflation without fine tuning, Phys. Rev. Lett. 73 (1994) 1886 [hep-ph/9406319] [SPIRES].

    Article  ADS  Google Scholar 

  26. E.J. Copeland, A.R. Liddle, D.H. Lyth, E.D. Stewart and D. Wands, False vacuum inflation with Einstein gravity, Phys. Rev. D 49 (1994) 6410 [astro-ph/9401011] [SPIRES].

    ADS  Google Scholar 

  27. S. Dimopoulos, G.R. Dvali and R. Rattazzi, Dynamical inflation and unification scale on quantum moduli spaces, Phys. Lett. B 410 (1997) 119 [hep-ph/9705348] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  28. Y. Nakai and M. Sakai, Inflation and Gauge Mediation in Supersymmetric Gauge Theory, Prog. Theor. Phys. 125 (2011) 395 [arXiv:1004.2099] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  29. K.A. Intriligator, N. Seiberg and D. Shih, Dynamical SUSY breaking in meta-stable vacua, JHEP 04 (2006) 021 [hep-th/0602239] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. R. Kitano, H. Ooguri and Y. Ookouchi, Direct mediation of meta-stable supersymmetry breaking, Phys. Rev. D 75 (2007) 045022 [hep-ph/0612139] [SPIRES].

    ADS  Google Scholar 

  31. N.J. Craig, ISS-flation, JHEP 02 (2008) 059 [arXiv:0801.2157] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  32. C.A. Savoy and A. Sil, Can Inflation Induce Supersymmetry Breaking in a Metastable Vacuum?, Phys. Lett. B 660 (2008) 236 [arXiv:0709.1923] [SPIRES].

    ADS  Google Scholar 

  33. P. Brax, C.A. Savoy and A. Sil, SQCD Inflation & SUSY Breaking, JHEP 04 (2009) 092 [arXiv:0902.0972] [SPIRES].

    Article  ADS  Google Scholar 

  34. P. Brax, C. van de Bruck, A.-C. Davis and S.C. Davis, Coupling hybrid inflation to moduli, JCAP 09 (2006) 012 [hep-th/0606140] [SPIRES].

    ADS  Google Scholar 

  35. S.C. Davis and M. Postma, Successfully combining SUGRA hybrid inflation and moduli stabilisation, JCAP 04 (2008) 022 [arXiv:0801.2116] [SPIRES].

    ADS  Google Scholar 

  36. M. Badziak and M. Olechowski, Inflation with racetrack superpotential and matter field, JCAP 02 (2010) 026 [arXiv:0911.1213] [SPIRES].

    ADS  Google Scholar 

  37. S. Mooij and M. Postma, Hybrid inflation with moduli stabilization and low scale supersymmetry breaking, JCAP 06 (2010) 012 [arXiv:1001.0664] [SPIRES].

    ADS  Google Scholar 

  38. F. Marchesano and G. Shiu, MSSM vacua from flux compactifications, Phys. Rev. D 71 (2005) 011701 [hep-th/0408059] [SPIRES].

    ADS  Google Scholar 

  39. F. Marchesano and G. Shiu, Building MSSM flux vacua, JHEP 11 (2004) 041 [hep-th/0409132] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  40. K. Nakayama, F. Takahashi and T.T. Yanagida, Constraint on the gravitino mass in hybrid inflation, JCAP 12 (2010) 010 [arXiv:1007.5152] [SPIRES].

    ADS  Google Scholar 

  41. R. Kallosh and A.D. Linde, P-term, D-term and F-term inflation, JCAP 10 (2003) 008 [hep-th/0306058] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  42. S. Kachru et al., Towards inflation in string theory, JCAP 10 (2003) 013 [hep-th/0308055] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  43. D. Baumann, A. Dymarsky, I.R. Klebanov, L. McAllister and P.J. Steinhardt, A Delicate Universe, Phys. Rev. Lett. 99 (2007) 141601 [arXiv:0705.3837] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  44. D. Baumann, A. Dymarsky, I.R. Klebanov and L. McAllister, Towards an Explicit Model of D-brane Inflation, JCAP 01 (2008) 024 [arXiv:0706.0360] [SPIRES].

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manabu Sakai.

Additional information

ArXiv ePrint: 1012.2187

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, T., Sakai, M. Inflation, moduli (de)stabilization and supersymmetry breaking. J. High Energ. Phys. 2011, 121 (2011). https://doi.org/10.1007/JHEP04(2011)121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2011)121

Keywords

Navigation