Skip to main content
Log in

Wilsonian renormalisation and the exact cut-off scale from holographic duality

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We propose a method for determining the exact correspondence between the Wilsonian cut-off scale on the boundary and its holographically dual bulk theory. We systematically construct the multi-trace Wilsonian effective action from holographic renormalisation and evolve it by integrating out the asymptotically Anti-de Sitter bulk geometry with scalar probes. The Wilsonian nature of the effective action is shown by proving that it must be either double-trace, closing in on itself under successive integrations, or have an infinite series of multi-trace terms. Focusing on composite scalar operator renormalisation, we relate the Callan-Symanzik equation, the flow of the scalar anomalous dimension and the multi-trace beta functions to their dual RG flows in the bulk. Establishing physical renormalisation conditions on the behaviour of the large-N anomalous dimension then enables us to extract the energy scales. Examples of pure AdS, GPPZ flow, black brane in AdS, M2 and M5 branes are studied before we generalise our results to arbitrary numbers of mass and thermal deformations of an ultra-violet CFT. Relations between the undeformed Wilsonian cut-off, deformation scales and the deformed Wilsonian cut-off are discussed, as is phenomenology of each considered background. We see how a mass gap, the emergent infra-red CFT scaling, etc. arise in different effective theories. We also argue that these results can have alternative interpretations through the flow of the conformal anomaly orthe Ricci scalar curvature of boundary branes. They show consistency with the c-theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1133 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].

  2. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  4. L. Susskind and E. Witten, The holographic bound in Anti-de Sitter space, hep-th/9805114 [INSPIRE].

  5. A.W. Peet and J. Polchinski, UV/IR relations in AdS dynamics, Phys. Rev. D 59 (1999) 065011 [hep-th/9809022] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. E.T. Akhmedov, A remark on the AdS/CFT correspondence and the renormalization group flow, Phys. Lett. B 442 (1998) 152 [hep-th/9806217] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, Novel local CFT and exact results on perturbations of N = 4 super Yang-Mills from AdS dynamics, JHEP 12 (1998) 022 [hep-th/9810126] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. J. Distler and F. Zamora, Nonsupersymmetric conformal field theories from stable Anti-de Sitter spaces, Adv. Theor. Math. Phys. 2 (1999) 1405 [hep-th/9810206] [INSPIRE].

    MathSciNet  Google Scholar 

  9. V. Balasubramanian and P. Kraus, Space-time and the holographic renormalization group, Phys. Rev. Lett. 83 (1999) 3605 [hep-th/9903190] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. J. de Boer, E.P. Verlinde and H.L. Verlinde, On the holographic renormalization group, JHEP 08 (2000) 003 [hep-th/9912012] [INSPIRE].

    Article  Google Scholar 

  11. V. Balasubramanian, P. Kraus, A.E. Lawrence and S.P. Trivedi, Holographic probes of Anti-de Sitter space-times, Phys. Rev. D 59 (1999) 104021 [hep-th/9808017] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. D. Freedman, S. Gubser, K. Pilch and N. Warner, Renormalization group flows from holography supersymmetry and a c theorem, Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  13. J. de Boer, The holographic renormalization group, Fortsch. Phys. 49 (2001) 339 [hep-th/0101026] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  14. K. Wilson and J.B. Kogut, The renormalization group and the ϵ-expansion, Phys. Rept. 12 (1974) 75 [INSPIRE].

    Article  ADS  Google Scholar 

  15. F.J. Wegner and A. Houghton, Renormalization group equation for critical phenomena, Phys. Rev. A 8 (1973) 401 [INSPIRE].

    Article  ADS  Google Scholar 

  16. K. Wilson, The renormalization group and critical phenomena, Rev. Mod. Phys. 55 (1983) 583 [INSPIRE].

    Article  ADS  Google Scholar 

  17. J. Polchinski, Renormalization and effective lagrangians, Nucl. Phys. B 231 (1984) 269 [INSPIRE].

    Article  ADS  Google Scholar 

  18. J. Polonyi, Lectures on the functional renormalization group method, Central Eur. J. Phys. 1 (2003) 1 [hep-th/0110026] [INSPIRE].

    Article  ADS  Google Scholar 

  19. T. Faulkner, H. Liu and M. Rangamani, Integrating out geometry: holographic Wilsonian RG and the membrane paradigm, JHEP 08 (2011) 051 [arXiv:1010.4036] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  20. I. Heemskerk and J. Polchinski, Holographic and Wilsonian renormalization groups, JHEP 06 (2011) 031 [arXiv:1010.1264] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. S.-J. Sin and Y. Zhou, Holographic Wilsonian RG flow and sliding membrane paradigm, JHEP 05 (2011) 030 [arXiv:1102.4477] [INSPIRE].

    Article  ADS  Google Scholar 

  22. D. Harlow and D. Stanford, Operator dictionaries and wave functions in AdS/CFT and dS/CFT, arXiv:1104.2621 [INSPIRE].

  23. J. Fan, Effective AdS/renormalized CFT, JHEP 09 (2011) 136 [arXiv:1105.0678] [INSPIRE].

    Article  ADS  Google Scholar 

  24. E. Akhmedov, I. Gahramanov and E. Musaev, Hints on integrability in the Wilsonian/holographic renormalization group, JETP Lett. 93 (2011) 545 [arXiv:1006.1970] [INSPIRE].

    Article  ADS  Google Scholar 

  25. D. Radicevic, Connecting the holographic and Wilsonian renormalization groups, JHEP 12 (2011) 023 [arXiv:1105.5825] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. D. Elander, H. Isono and G. Mandal, Holographic Wilsonian flows and emergent fermions in extremal charged black holes, JHEP 11 (2011) 155 [arXiv:1109.3366] [INSPIRE].

    Article  ADS  Google Scholar 

  27. J.N. Laia and D. Tong, Flowing between fermionic fixed points, JHEP 11 (2011) 131 [arXiv:1108.2216] [INSPIRE].

    Article  ADS  Google Scholar 

  28. I. Bredberg, C. Keeler, V. Lysov and A. Strominger, Wilsonian approach to fluid/gravity duality, JHEP 03 (2011) 141 [arXiv:1006.1902] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. S.-S. Lee, Holographic description of quantum field theory, Nucl. Phys. B 832 (2010) 567 [arXiv:0912.5223] [INSPIRE].

    Article  ADS  Google Scholar 

  30. S.-S. Lee, Holographic description of large-N gauge theory, Nucl. Phys. B 851 (2011) 143 [arXiv:1011.1474] [INSPIRE].

    Article  ADS  Google Scholar 

  31. M.F. Paulos, Holographic phase space: c-functions and black holes as renormalization group flows, JHEP 05 (2011) 043 [arXiv:1101.5993] [INSPIRE].

    Article  ADS  Google Scholar 

  32. S. Kuperstein and A. Mukhopadhyay, The unconditional RG flow of the relativistic holographic fluid, JHEP 11 (2011) 130 [arXiv:1105.4530] [INSPIRE].

    Article  ADS  Google Scholar 

  33. S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  34. K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  35. M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic renormalization, Nucl. Phys. B 631 (2002) 159 [hep-th/0112119] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality: prescription, renormalization and examples, JHEP 05 (2009) 085 [arXiv:0812.2909] [INSPIRE].

    Article  ADS  Google Scholar 

  37. E. Witten, Multitrace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [INSPIRE].

  38. I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. I. Papadimitriou, Multi-trace deformations in AdS/CFT: exploring the vacuum structure of the deformed CFT, JHEP 05 (2007) 075 [hep-th/0703152] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. L. Vecchi, Multitrace deformations, Gamow states and stability of AdS/CFT, JHEP 04 (2011) 056 [arXiv:1005.4921] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. E.T. Akhmedov, Notes on multitrace operators and holographic renormalization group, hep-th/0202055 [INSPIRE].

  42. W. Mueck, An improved correspondence formula for AdS/CFT with multitrace operators, Phys. Lett. B 531 (2002) 301 [hep-th/0201100] [INSPIRE].

    Article  ADS  Google Scholar 

  43. P. Minces, Multitrace operators and the generalized AdS/CFT prescription, Phys. Rev. D 68 (2003) 024027 [hep-th/0201172] [INSPIRE].

    ADS  Google Scholar 

  44. T. Hartman and L. Rastelli, Double-trace deformations, mixed boundary conditions and functional determinants in AdS/CFT, JHEP 01 (2008) 019 [hep-th/0602106] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. S.S. Gubser and I.R. Klebanov, A universal result on central charges in the presence of double trace deformations, Nucl. Phys. B 656 (2003) 23 [hep-th/0212138] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. P. Mansfield and D. Nolland, One loop conformal anomalies from AdS/CFT in the Schrödinger representation, JHEP 07 (1999) 028 [hep-th/9906054] [INSPIRE].

    Article  ADS  Google Scholar 

  47. D. Brattan, J. Camps, R. Loganayagam and M. Rangamani, CFT dual of the AdS Dirichlet problem: fluid/gravity on cut-off surfaces, JHEP 12 (2011) 090 [arXiv:1106.2577] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. I. Papadimitriou and K. Skenderis, AdS/CFT correspondence and geometry, hep-th/0404176 [INSPIRE].

  49. I. Papadimitriou and K. Skenderis, Correlation functions in holographic RG flows, JHEP 10 (2004) 075 [hep-th/0407071] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [INSPIRE].

    ADS  Google Scholar 

  51. D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. C. Herzog and D. Son, Schwinger-Keldysh propagators from AdS/CFT correspondence, JHEP 03 (2003) 046 [hep-th/0212072] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. C. Fefferman and C. Robin Graham, Conformal invariants, in Elie Cartan et les Mathématiques d’aujourd’hui Astérisque (1985) 95.

  54. L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, The supergravity dual of N = 1 super Yang-Mills theory, Nucl. Phys. B 569 (2000) 451 [hep-th/9909047] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  55. M. Porrati and A. Starinets, On the canonical c function in 4D field theories possessing supergravity duals, Phys. Lett. B 498 (2001) 285 [hep-th/0009227] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  56. M. Porrati and A. Starinets, Holographic duals of 4D field theories, hep-th/0009198 [INSPIRE].

  57. E. Pomoni and L. Rastelli, Large-N field theory and AdS tachyons, JHEP 04 (2009) 020 [arXiv:0805.2261] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  58. L. Vecchi, The conformal window of deformed CFT’s in the planar limit, Phys. Rev. D 82 (2010) 045013 [arXiv:1004.2063] [INSPIRE].

    ADS  Google Scholar 

  59. P. Breitenlohner and D.Z. Freedman, Stability in gauged extended supergravity, Annals Phys. 144 (1982) 249 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  60. C.G. Callan Jr., S.R. Coleman and R. Jackiw, A new improved energy-momentum tensor, Annals Phys. 59 (1970) 42 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  61. K. Higashijima and E. Itou, Unitarity bound of the wave function renormalization constant, Prog. Theor. Phys. 110 (2003) 107 [hep-th/0304047] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  62. M.E. Peskin and D.V. Schroeder, An introduction to quantum field theory, Addison-Wesley, U.S.A. (1995).

    Google Scholar 

  63. T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, Phys. Rev. D 83 (2011) 125002 [arXiv:0907.2694] [INSPIRE].

    ADS  Google Scholar 

  64. H. Lü, J.-w. Mei, C. Pope and J.F. Vazquez-Poritz, Extremal static AdS black hole/CFT correspondence in gauged supergravities, Phys. Lett. B 673 (2009) 77 [arXiv:0901.1677] [INSPIRE].

    Article  ADS  Google Scholar 

  65. S. Carlip, Black hole entropy from conformal field theory in any dimension, Phys. Rev. Lett. 82 (1999) 2828 [hep-th/9812013] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  66. S.N. Solodukhin, Conformal description of horizon’s states, Phys. Lett. B 454 (1999) 213 [hep-th/9812056] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  67. E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  68. A. Zamolodchikov, Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory, JETP Lett. 43 (1986) 730 [Pisma Zh. Eksp. Teor. Fiz. 43 (1986) 565] [INSPIRE].

  69. J.L. Cardy, Is there a c theorem in four-dimensions?, Phys. Lett. B 215 (1988) 749 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  70. Z. Komargodski and A. Schwimmer, On renormalization group flows in four dimensions, JHEP 12 (2011) 099 [arXiv:1107.3987] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  71. R.C. Myers and A. Sinha, Seeing a c-theorem with holography, Phys. Rev. D 82 (2010) 046006 [arXiv:1006.1263] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sašo Grozdanov.

Additional information

ArXiv ePrint: 1112.3356

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grozdanov, S. Wilsonian renormalisation and the exact cut-off scale from holographic duality. J. High Energ. Phys. 2012, 79 (2012). https://doi.org/10.1007/JHEP06(2012)079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2012)079

Keywords

Navigation