Skip to main content
Log in

Rotating black droplet

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We construct the gravitational dual, in the Unruh state, of the “jammed” phase of a CFT at strong coupling and infinite N on a fixed five-dimensional rotating Myers-Perry black hole with equal angular momenta. When the angular momenta are all zero, the solution corresponds to the five-dimensional generalization of the solution first studied in [1]. In the extremal limit, when the angular momenta of the Myers-Perry black hole are maximum, the Unruh, Boulware and Hartle-Hawking states degenerate. We give a detailed analysis of the corresponding holographic stress energy tensor for all values of the angular momenta, finding it to be regular at the horizon in all cases. We compare our results with existent literature on thermal states of free field theories on black hole backgrounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Figueras, J. Lucietti and T. Wiseman, Ricci solitons, Ricci flow and strongly coupled CFT in the Schwarzschild Unruh or Boulware vacua, Class. Quant. Grav. 28 (2011) 215018 [arXiv:1104.4489] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. S. Hawking, Black hole explosions, Nature 248 (1974) 30 [INSPIRE].

    Article  ADS  Google Scholar 

  3. N.D. Birrell and P.C.W. Davies, Quantum fields in curved space, Cambridge University Press, Cambridge U.K. (1982).

    Book  MATH  Google Scholar 

  4. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

  5. L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. T. Tanaka, Classical black hole evaporation in Randall-Sundrum infinite brane world, Prog. Theor. Phys. Suppl. 148 (2003) 307 [gr-qc/0203082] [INSPIRE].

    Article  ADS  Google Scholar 

  7. R. Emparan, A. Fabbri and N. Kaloper, Quantum black holes as holograms in AdS brane worlds, JHEP 08 (2002) 043 [hep-th/0206155] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. V.E. Hubeny, D. Marolf and M. Rangamani, Hawking radiation in large-N strongly-coupled field theories, Class. Quant. Grav. 27 (2010) 095015 [arXiv:0908.2270] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. V.E. Hubeny, D. Marolf and M. Rangamani, Hawking radiation from AdS black holes, Class. Quant. Grav. 27 (2010) 095018 [arXiv:0911.4144] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. S. Fischetti, D. Marolf and J.E. Santos, AdS flowing black funnels: stationary AdS black holes with non-Killing horizons and heat transport in the dual CFT, Class. Quant. Grav. 30 (2013) 075001 [arXiv:1212.4820] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. V.E. Hubeny, D. Marolf and M. Rangamani, Black funnels and droplets from the AdS C-metrics, Class. Quant. Grav. 27 (2010) 025001 [arXiv:0909.0005] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. M.M. Caldarelli, O.J. Dias, R. Monteiro and J.E. Santos, Black funnels and droplets in thermal equilibrium, JHEP 05 (2011) 116 [arXiv:1102.4337] [INSPIRE].

    Article  ADS  Google Scholar 

  13. S. Fischetti and D. Marolf, Flowing Funnels: heat sources for field theories and the AdS 3 dual of CFT 2 Hawking radiation, Class. Quant. Grav. 29 (2012) 105004 [arXiv:1202.5069] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. J.E. Santos and B. Way, Black funnels, JHEP 12 (2012) 060 [arXiv:1208.6291] [INSPIRE].

    Article  ADS  Google Scholar 

  15. A.R. Steif, The quantum stress tensor in the three-dimensional black hole, Phys. Rev. D 49 (1994) 585 [gr-qc/9308032] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  16. R. Myers and M. Perry, Black holes in higher dimensional space-times, Ann. Phys. 172 (1986) 304.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. R.C. Myers, Myers-Perry black holes, arXiv:1111.1903 [INSPIRE].

  18. P. Figueras and S. Tunyasuvunakool, CFTs in rotating black hole backgrounds, Class. Quantum Grav. 30 (2013) 125015 [arXiv:1304.1162] [INSPIRE]

    Article  ADS  Google Scholar 

  19. S.A. Fulling and P.C.W. Davies, Radiation from a moving mirror in two dimensional space-time: Conformal anomaly, Proc. Roy. Soc. Lond. A 348 (1976) 393.

    MathSciNet  ADS  Google Scholar 

  20. H. Casimir, On the attraction between two perfectly conducting plates, Indag. Math. 10 (1948) 261.

    Google Scholar 

  21. H. Epstein, V. Glaser, and A. Jaffe, Nonpositivity of the energy density in quantized field theories, Nuovo Cim. 36 (1965) 1016.

    Article  MathSciNet  Google Scholar 

  22. P. Davies, S. Fulling and W. Unruh, Energy momentum tensor near an evaporating black hole, Phys. Rev. D 13 (1976) 2720 [INSPIRE].

    ADS  Google Scholar 

  23. D.N. Page, Thermal stress tensors in static Einstein spaces, Phys. Rev. D 25 (1982) 1499 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  24. J. Bekenstein and L. Parker, Path integral evaluation of Feynman propagator in curved space-time, Phys. Rev. D 23 (1981) 2850 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  25. P. Candelas, Vacuum polarization in Schwarzschild space-time, Phys. Rev. D 21 (1980) 2185 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  26. S. Christensen and S. Fulling, Trace anomalies and the Hawking effect, Phys. Rev. D 15 (1977) 2088 [INSPIRE].

    ADS  Google Scholar 

  27. F. Tangherlini, Schwarzschild field in n dimensions and the dimensionality of space problem, Nuovo Cim. 27 (1963) 636 [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  28. S.B. Giddings, E. Katz and L. Randall, Linearized gravity in brane backgrounds, JHEP 03 (2000) 023 [hep-th/0002091] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. S.P. Trivedi, Semiclassical extremal black holes, Phys. Rev. D 47 (1993) 4233 [hep-th/9211011] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  30. D.J. Loranz, W.A. Hiscock and P.R. Anderson, Thermal divergences on the event horizons of two-dimensional black holes, Phys. Rev. D 52 (1995) 4554 [gr-qc/9504044] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  31. R. Balbinot, S. Fagnocchi, A. Fabbri, S. Farese and J. Navarro-Salas, On the quantum stress tensor for extreme 2D Reissner-Nordstrom black holes, Phys. Rev. D 70 (2004) 064031 [hep-th/0405263] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  32. S. Farese, Regularity of the stress-energy tensor for extremal Reissner-Nordstrom black holes, J. Phys. Conf. Ser. 33 (2006) 451 [hep-th/0512181] [INSPIRE].

    Article  ADS  Google Scholar 

  33. P.R. Anderson, W.A. Hiscock and D.J. Loranz, Semiclassical stability of the extreme Reissner-Nordstrom black hole, Phys. Rev. Lett. 74 (1995) 4365 [gr-qc/9504019] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. D.M. DeTurck, Deforming metrics in the direction of their Ricci tensors, J. Diff. Geom. 18 (1983) 157.

    MathSciNet  MATH  Google Scholar 

  35. M. Headrick, S. Kitchen and T. Wiseman, A new approach to static numerical relativity and its application to Kaluza-Klein black holes, Class. Quant. Grav. 27 (2010) 035002 [arXiv:0905.1822] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  37. R. Gregory, Black string instabilities in Anti-de Sitter space, Class. Quant. Grav. 17 (2000) L125 [hep-th/0004101] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. E. Poisson and W. Israel, Internal structure of black holes, Phys. Rev. D 41 (1990) 1796 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Fischetti.

Additional information

ArXiv ePrint: 1304.1156

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischetti, S., Santos, J.E. Rotating black droplet. J. High Energ. Phys. 2013, 156 (2013). https://doi.org/10.1007/JHEP07(2013)156

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2013)156

Keywords

Navigation