Skip to main content
Log in

Chiral conductivities and effective field theory

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We construct the three-dimensional effective field theory which reproduces low-momentum static correlation functions in four-dimensional quantum field theories with U(1) axial anomalies and a dynamical vector gauge field, in thermal equilibrium. We compute radiative corrections to parity-violating chiral conductivities, to leading order in the effective theory. All of the anomaly-induced transport is susceptible to radiative corrections, except for certain two-point functions which are required by symmetry to vanish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Weinberg, The quantum theory of fields. Volume 2: modern applications, Cambridge University Press, Cambridge U.K. (1996) [INSPIRE].

    Book  Google Scholar 

  2. D.T. Son and P. Surowka, Hydrodynamics with triangle anomalies, Phys. Rev. Lett. 103 (2009)191601 [arXiv:0906.5044] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. Y. Neiman and Y. Oz, Relativistic hydrodynamics with general anomalous charges, JHEP 03 (2011)023 [arXiv:1011.5107] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. K. Jensen, R. Loganayagam and A. Yarom, Thermodynamics, gravitational anomalies and cones, JHEP 02 (2013) 088 [arXiv:1207.5824] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. D. Son and A.R. Zhitnitsky, Quantum anomalies in dense matter, Phys. Rev. D 70 (2004) 074018 [hep-ph/0405216] [INSPIRE].

    ADS  Google Scholar 

  6. I. Amado, K. Landsteiner and F. Pena-Benitez, Anomalous transport coefficients from Kubo formulas in holography, JHEP 05 (2011) 081 [arXiv:1102.4577] [INSPIRE].

    Article  ADS  Google Scholar 

  7. N. Banerjee et al., Constraints on fluid dynamics from equilibrium partition functions, JHEP 09 (2012) 046 [arXiv:1203.3544] [INSPIRE].

    Article  ADS  Google Scholar 

  8. K. Jensen, Triangle anomalies, thermodynamics and hydrodynamics, Phys. Rev. D 85 (2012) 125017 [arXiv:1203.3599] [INSPIRE].

    ADS  Google Scholar 

  9. A. Vilenkin, Equilibrium parity violating current in a magnetic field, Phys. Rev. D 22 (1980) 3080 [INSPIRE].

    ADS  Google Scholar 

  10. A.Y. Alekseev, V.V. Cheianov and J. Fröhlich, Universality of transport properties in equilibrium, Goldstone theorem and chiral anomaly, Phys. Rev. Lett. 81 (1998) 3503 [cond-mat/9803346] [INSPIRE].

    Article  ADS  Google Scholar 

  11. K. Fukushima, D.E. Kharzeev and H.J. Warringa, The chiral magnetic effect, Phys. Rev. D 78 (2008)074033 [arXiv:0808.3382] [INSPIRE].

    ADS  Google Scholar 

  12. D.E. Kharzeev and H.J. Warringa, Chiral magnetic conductivity, Phys. Rev. D 80 (2009) 034028 [arXiv:0907.5007] [INSPIRE].

    ADS  Google Scholar 

  13. A. Vilenkin, Cancellation of equilibrium parity violating currents, Phys. Rev. D 22 (1980) 3067 [INSPIRE].

    ADS  Google Scholar 

  14. M.A. Metlitski and A.R. Zhitnitsky, Anomalous axion interactions and topological currents in dense matter, Phys. Rev. D 72 (2005) 045011 [hep-ph/0505072] [INSPIRE].

    ADS  Google Scholar 

  15. G. Newman and D. Son, Response of strongly-interacting matter to magnetic field: some exact results, Phys. Rev. D 73 (2006) 045006 [hep-ph/0510049] [INSPIRE].

    ADS  Google Scholar 

  16. A. Vilenkin, Macroscopic parity violating effects: neutrino fluxes from rotating black holes and in rotating thermal radiation, Phys. Rev. D 20 (1979) 1807 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  17. V.I. Zakharov, Chiral magnetic effect in hydrodynamic approximation, Lect. Notes Phys. 871 (2013)295 [arXiv:1210.2186] [INSPIRE].

    Article  ADS  Google Scholar 

  18. S.L. Adler and W.A. Bardeen, Absence of higher order corrections in the anomalous axial vector divergence equation, Phys. Rev. 182 (1969) 1517 [INSPIRE].

    Article  ADS  Google Scholar 

  19. S.L. Adler, Axial vector vertex in spinor electrodynamics, Phys. Rev. 177 (1969) 2426 [INSPIRE].

    Article  ADS  Google Scholar 

  20. S.L. Adler, Anomalies to all orders, hep-th/0405040 [INSPIRE].

  21. S. Golkar and D.T. Son, Non-renormalization of the chiral vortical effect coefficient, arXiv:1207.5806 [INSPIRE].

  22. D.-F. Hou, H. Liu and H.-C. Ren, A possible higher order correction to the vortical conductivity in a gauge field plasma, Phys. Rev. D 86 (2012) 121703 [arXiv:1210.0969] [INSPIRE].

    ADS  Google Scholar 

  23. P. Kovtun, G.D. Moore and P. Romatschke, The stickiness of sound: an absolute lower limit on viscosity and the breakdown of second order relativistic hydrodynamics, Phys. Rev. D 84 (2011)025006 [arXiv:1104.1586] [INSPIRE].

    ADS  Google Scholar 

  24. E. Braaten and A. Nieto, Effective field theory approach to high temperature thermodynamics, Phys. Rev. D 51 (1995) 6990 [hep-ph/9501375] [INSPIRE].

    ADS  Google Scholar 

  25. E. Braaten and A. Nieto, Free energy of QCD at high temperature, Phys. Rev. D 53 (1996) 3421 [hep-ph/9510408] [INSPIRE].

    ADS  Google Scholar 

  26. J.O. Andersen, The free energy of high temperature QED to order e 5 from effective field theory, Phys. Rev. D 53 (1996) 7286 [hep-ph/9509409] [INSPIRE].

    ADS  Google Scholar 

  27. K. Jensen et al., Towards hydrodynamics without an entropy current, Phys. Rev. Lett. 109 (2012)101601 [arXiv:1203.3556] [INSPIRE].

    Article  ADS  Google Scholar 

  28. A. Niemi and G. Semenoff, Axial anomaly induced Fermion fractionization and effective gauge theory actions in odd dimensional space-times, Phys. Rev. Lett. 51 (1983) 2077 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. A. Redlich, Parity violation and gauge noninvariance of the effective gauge field action in three-dimensions, Phys. Rev. D 29 (1984) 2366 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  30. S.R. Coleman and B.R. Hill, No more corrections to the topological mass term in QED in three-dimensions, Phys. Lett. B 159 (1985) 184 [INSPIRE].

    Article  ADS  Google Scholar 

  31. J.C. Collins, A.V. Manohar and M.B. Wise, Renormalization of the vector current in QED, Phys. Rev. D 73 (2006) 105019 [hep-th/0512187] [INSPIRE].

    ADS  Google Scholar 

  32. V. Rubakov, On chiral magnetic effect and holography, arXiv:1005.1888 [INSPIRE].

  33. V. Braguta, M. Chernodub, K. Landsteiner, M. Polikarpov and M. Ulybyshev, Numerical evidence of the axial magnetic effect, arXiv:1303.6266 [INSPIRE].

  34. H. Itoyama and A.H. Mueller, The axial anomaly at finite temperature, Nucl. Phys. B 218 (1983)349 [INSPIRE].

    Article  ADS  Google Scholar 

  35. R.A. Bertlmann, Anomalies in quantum field theory, Clarendon Press, Oxford U.K. (1996) [INSPIRE].

    MATH  Google Scholar 

  36. J.A. Harvey, TASI 2003 lectures on anomalies, hep-th/0509097 [INSPIRE].

  37. A. Bilal, Lectures on anomalies, arXiv:0802.0634 [INSPIRE].

  38. J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett. B 37 (1971)95 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. W.A. Bardeen and B. Zumino, Consistent and covariant anomalies in gauge and gravitational theories, Nucl. Phys. B 244 (1984) 421 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. L.D. Landau and E.M. Lifshitz, Fluid mechanics, Pergamon Press, Oxford U.K. (1987).

    MATH  Google Scholar 

  41. S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].

    Article  ADS  Google Scholar 

  42. R. Baier, P. Romatschke, D.T. Son, A.O. Starinets and M.A. Stephanov, Relativistic viscous hydrodynamics, conformal invariance and holography, JHEP 04 (2008) 100 [arXiv:0712.2451] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. E. Wang and U.W. Heinz, A generalized fluctuation dissipation theorem for nonlinear response functions, Phys. Rev. D 66 (2002) 025008 [hep-th/9809016] [INSPIRE].

    ADS  Google Scholar 

  44. G.D. Moore and K.A. Sohrabi, Kubo formulae for second-order hydrodynamic coefficients, Phys. Rev. Lett. 106 (2011) 122302 [arXiv:1007.5333] [INSPIRE].

    Article  ADS  Google Scholar 

  45. J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, Fluid dynamics of R-charged black holes, JHEP 01 (2009) 055 [arXiv:0809.2488] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. N. Banerjee et al., Hydrodynamics from charged black branes, JHEP 01 (2011) 094 [arXiv:0809.2596] [INSPIRE].

    Article  ADS  Google Scholar 

  47. K. Jensen et al., Parity-violating hydrodynamics in 2 + 1 dimensions, JHEP 05 (2012) 102 [arXiv:1112.4498] [INSPIRE].

    Article  ADS  Google Scholar 

  48. S. Dubovsky, L. Hui and A. Nicolis, Effective field theory for hydrodynamics: Wess-Zumino term and anomalies in two spacetime dimensions, arXiv:1107.0732 [INSPIRE].

  49. V. Nair, R. Ray and S. Roy, Fluids, anomalies and the chiral magnetic effect: a group-theoretic formulation, Phys. Rev. D 86 (2012) 025012 [arXiv:1112.4022] [INSPIRE].

    ADS  Google Scholar 

  50. T. Evans, N point finite temperature expectation values at real times, Nucl. Phys. B 374 (1992)340 [INSPIRE].

    Article  ADS  Google Scholar 

  51. J. Bhattacharya, S. Bhattacharyya, S. Minwalla and A. Yarom, A theory of first order dissipative superfluid dynamics, arXiv:1105.3733 [INSPIRE].

  52. R. Loganayagam, Anomaly induced transport in arbitrary dimensions, arXiv:1106.0277 [INSPIRE].

  53. D.E. Kharzeev and H.-U. Yee, Anomalies and time reversal invariance in relativistic hydrodynamics: the second order and higher dimensional formulations, Phys. Rev. D 84 (2011)045025 [arXiv:1105.6360] [INSPIRE].

    ADS  Google Scholar 

  54. S. Bhattacharyya, J.R. David and S. Thakur, Second order transport from anomalies, arXiv:1305.0340 [INSPIRE].

  55. K. Landsteiner, E. Megias and F. Pena-Benitez, Gravitational anomaly and transport, Phys. Rev. Lett. 107 (2011) 021601 [arXiv:1103.5006] [INSPIRE].

    Article  ADS  Google Scholar 

  56. K. Landsteiner, E. Megias, L. Melgar and F. Pena-Benitez, Holographic gravitational anomaly and chiral vortical effect, JHEP 09 (2011) 121 [arXiv:1107.0368] [INSPIRE].

    Article  ADS  Google Scholar 

  57. H. Bloete, J.L. Cardy and M. Nightingale, Conformal invariance, the central charge and universal finite size amplitudes at criticality, Phys. Rev. Lett. 56 (1986) 742 [INSPIRE].

    Article  ADS  Google Scholar 

  58. I. Affleck, Universal term in the free energy at a critical point and the conformal anomaly, Phys. Rev. Lett. 56 (1986) 746 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  59. S.N. Solodukhin, Entanglement entropy of black holes, Living Rev. Rel. 14 (2011) 8 [arXiv:1104.3712] [INSPIRE].

    Google Scholar 

  60. R. Loganayagam, Anomalies and the helicity of the thermal state, arXiv:1211.3850 [INSPIRE].

  61. J.I. Kapusta, Bose-Einstein condensation, spontaneous symmetry breaking and gauge theories, Phys. Rev. D 24 (1981) 426 [INSPIRE].

    ADS  Google Scholar 

  62. P.A. Davidson, An introduction to magnetohydrodynamics, Cambridge University Press, Cambridge U.K. (2001).

    Book  MATH  Google Scholar 

  63. C. Closset, T.T. Dumitrescu, G. Festuccia, Z. Komargodski and N. Seiberg, Comments on Chern-Simons contact terms in three dimensions, JHEP 09 (2012) 091 [arXiv:1206.5218] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  64. A. Redlich and L. Wijewardhana, Induced Chern-Simons terms at high temperatures and finite densities, Phys. Rev. Lett. 54 (1985) 970 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  65. A. Niemi and G. Semenoff, A comment oninduced Chern-Simons terms at high temperatures and finite densities’, Phys. Rev. Lett. 54 (1985) 2166 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  66. Z. Khaidukov, V. Kirilin, A. Sadofyev and V. Zakharov, On magnetostatics of chiral media, arXiv:1307.0138 [INSPIRE].

  67. S. Bhattacharyya, S. Jain, S. Minwalla and T. Sharma, Constraints on superfluid hydrodynamics from equilibrium partition functions, JHEP 01 (2013) 040 [arXiv:1206.6106] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  68. Y. Akamatsu and N. Yamamoto, Chiral plasma instabilities, Phys. Rev. Lett. 111 (2013) 052002 [arXiv:1302.2125] [INSPIRE].

    Article  ADS  Google Scholar 

  69. D. Hou, H. Liu and H.-C. Ren, Some field theoretic issues regarding the chiral magnetic effect, JHEP 05 (2011) 046 [arXiv:1103.2035] [INSPIRE].

    Article  ADS  Google Scholar 

  70. H.J. Warringa, Dynamics of the chiral magnetic effect in a weak magnetic field, Phys. Rev. D 86 (2012) 085029 [arXiv:1205.5679] [INSPIRE].

    ADS  Google Scholar 

  71. X.-G. Huang, A. Sedrakian and D.H. Rischke, Kubo formulae for relativistic fluids in strong magnetic fields, Annals Phys. 326 (2011) 3075 [arXiv:1108.0602] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  72. D. Marolf and S.F. Ross, Boundary conditions and new dualities: vector fields in AdS/CFT, JHEP 11 (2006) 085 [hep-th/0606113] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  73. K. Jensen, Chiral anomalies and AdS/CMT in two dimensions, JHEP 01 (2011) 109 [arXiv:1012.4831] [INSPIRE].

    Article  ADS  Google Scholar 

  74. E. Gorbar, V. Miransky, I. Shovkovy and X. Wang, Radiative corrections to chiral separation effect in QED, Phys. Rev. D 88 (2013) 025025 [arXiv:1304.4606] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristan Jensen.

Additional information

ArXiv ePrint: 1307.3234

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, K., Kovtun, P. & Ritz, A. Chiral conductivities and effective field theory. J. High Energ. Phys. 2013, 186 (2013). https://doi.org/10.1007/JHEP10(2013)186

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2013)186

Keywords

Navigation